

# 2017年硕士研究生初试考试自命题科目大纲查询导航页

| 考试科目代码 | 考试科目名称               |
|--------|----------------------|
| 211    | 翻译硕士英语               |
| 240    | <u>德语</u>            |
| 245    | <u>二外俄语</u>          |
| 246    | <u>二外日语</u>          |
| 247    | <u>二外德语</u>          |
| 248    | <u>二外法语</u>          |
| 333    | 教育学综合                |
| 344    | 风景园林基础               |
| 349    | <u>药学综合</u>          |
| 354    | 汉语基础                 |
| 355    | 建筑学基础                |
| 356    | 城市规划基础               |
| 357    | 英语翻译基础               |
| 431    | 金融学综合                |
| 436    | 资产评估专业基础             |
| 445    | 汉语国际教育基础             |
| 446    | 城市规划设计               |
| 448    | 汉语写作与百科知识            |
| 510    | 景观规划设计(全天连续设计 6 小时)  |
| 511    | 艺术设计(全天连续设计 6 小时)    |
| 513    | 建筑设计(全天连续设计 6 小时)    |
| 602    | 数学分析                 |
| 714    | 生物化学基础               |
| 715    | 哲学基础                 |
| 716    | 基础生物化学               |
| 717    | 普通物理                 |
| 718    | 有机化学                 |
| 719    | 西方哲学史                |
| 720    | <u>法学基础综合</u>        |
| 721    | 毛泽东思想和中国特色社会主义理论体系概论 |

| 722    | 语言文学基础         |
|--------|----------------|
| 723    | 基础英语           |
| 考试科目代码 | 考试科目名称         |
| 724    | 教育心理学          |
| 728    | 建筑理论综合         |
| 729    | 中外美术史及理论       |
| 730    | 美术史论           |
| 732    | 城乡规划基本理论与相关知识  |
| 733    | 细胞生物学          |
| 734    | 教育学综合          |
| 735    | 中外文化与汉语言基础综合   |
| 801    | 理论力学           |
| 802    | 材料力学           |
| 803    | 机械原理与机械设计      |
| 804    | 内燃机原理          |
| 805    | 工程热力学          |
| 806    | 测控技术基础         |
| 807    | 工程光学           |
| 808    | <u>电磁场与电磁波</u> |
| 809    | 光电子学基础         |
| 810    | 生物医学工程基础       |
| 811    | <u>电路</u>      |
| 812    | <u>自动控制理论</u>  |
| 813    | 半导体物理或电介质物理    |
| 814    | 通信原理           |
| 815    | <u>信号与系统</u>   |
| 816    | <u>声学基础</u>    |
| 817    | 土力学            |
| 818    | <u>结构力学</u>    |
| 819    | <u>水力学</u>     |
| 820    | 结构力学与弹性力学基础    |
| 821    | 船舶与海洋工程结构力学    |
| 822    | 船舶总论与设备        |
| 823    | 绘画测试           |
| 824    | 建筑技术综合         |
| 825    | 微生物学           |
| 826    | 化工原理           |

| 827    | 生物化学               |
|--------|--------------------|
| 828    | 制药工艺学              |
| 考试科目代码 | 考试科目名称             |
| 830    | 材料加工基础             |
| 831    | 宏微观经济学             |
| 832    | <u>运筹学基础</u>       |
| 833    | 应用经济学              |
| 834    | <u>信息检索</u>        |
| 835    | <u>药事管理法规</u>      |
| 836    | <u>高等代数</u>        |
| 837    | 量子力学               |
| 839    | <u>物理化学</u>        |
| 840    | <u>科学技术史</u>       |
| 841    | 中国哲学史              |
| 842    | <u>法学专业综合</u>      |
| 843    | <u>马克思主义原理</u>     |
| 844    | <u>中共党史</u>        |
| 845    | <u>汉语</u>          |
| 846    | 中国现当代文学            |
| 847    | 外国语言学与应用语言学基础      |
| 849    | <u>教育学</u>         |
| 850    | 暖通空调               |
| 851    | <u>环境工程原理与分析监测</u> |
| 852    | <u>环境学</u>         |
| 853    | 教育管理原理与实务          |
| 854    | 现代教育技术基础或程序设计语言    |
| 855    | 产品设计               |
| 856    | <u>分子生物学</u>       |
| 858    | <u>高分子化学</u>       |
| 860    | 食品微生物学             |
| 861    | 食品化学               |
| 862    | 金属材料科学基础           |
| 863    | 高分子化学与物理           |
| 864    | 无机材料科学基础           |
| 865    | 基础有机化学             |
| 901    | 数据结构与程序设计          |
| 902    | <u>软件工程</u>        |

| 903    | 城乡规划实务     |
|--------|------------|
| 905    | 细胞生物学基础    |
| 考试科目代码 | 考试科目名称     |
| 906    | <u>遗传学</u> |
| 907    | 普通地质学      |
| 908    | 海洋科学导论     |

211 翻译硕士英语

## 一、考试的总体要求

《翻译硕士英语》重点考察考生的英语基础,内容包括:词汇语法、阅读理解、英语写作等,总分 100 分。

- 二、考试内容及比例
- 1、词汇语法: 30分。
- 2、阅读理解: 40分。
- 3、英语写作: 30分。
- 三、试卷题型

题型包括多项选择、改错、简答、命题作文等。

四、考试形式及时间

采用闭卷形式考试,考试时间为180分钟。

240 德语

## 一、 考试的总体要求

本课程主要考查考生对德语语言的掌握情况,既考查基础知识也考查运用能力。

## 二、 考试的内容及比例

名词、代词、形容词的变格形式和各格的基本用法,占 10%;

动词直陈式主动态的现在时态、现在完成时态、过去时态及其基本用法占10%;

简单句、并列复合句和简单主从复合句的结构和成分,占10%;

常用介词的主要用法,占10%;

直陈式被动态 5 种时态及其基本用法,占 10%;

介词和连词的纵向比较及其用法,占10%;

复杂主从复合句的结构及其用法,占10%;

分词结构的组成及其用法,占10%;

虚拟语气及命令式的基本形式,占 10%;

短文写作,占10%。

三、 试卷类型及比例

试卷满分为100分。

客观题选择题(4选1)为20分或30分,主观题为80分或70分。

客观题以语法词汇为主; 主观题包括语法词汇测试、德汉互译、短文理解及写作等。

四、 考试形式及时间

考试形式:笔试。考试时间:3小时。

245 二外俄语

- 一、考试的总体要求 本门课程主要考察学生运用已学常用基本词语和基本语法规则的能力; 考察学生阅读理解一 般读物获取信息的能力;考察学生正确理解内容较浅显的原文和用汉 语表达原文内容的能 力;考察学生用俄语简单表达思想的能力。
- 二、 考试的内容及比例

本考试包括五个部分:1、语法结构 (词法、句法)20%; 2、词汇用法 10%; 3、阅读理解 30%; 4、 俄译汉 20%; 5、写文 20%。

- 三、 试卷类型及比例
- 1、完形填空或联句 20%;
- 2、选择题 40%;
- 3、俄译汉 20%;
- 4、写文 20%。
- 四、考试形式及时间

考试形式:笔试。考试时间:3 小时。(满分 100 分)

246 二外日语

## 一、考试的总体要求:

掌握日语基本词汇 **2500** 左右, 熟练应用日语语法, 能够阅读现代日语文章, 具备一定的汉日互译能力。

二、考试形式与考试时间:

考试形式是笔试,卷面总分 100 分,考试时间为 180 分钟。考试为闭卷考试,考试过程中不允许使用任何参考资料。

三、考试试题基本分为如下三个部分:

第一部分: 文字与词汇(大约25分左右)

测试考生对日语词汇及日语汉字的掌握程度。

第二部分:语法(大约25分左右)

测试考生对日语语法以及短语、惯用句型等的熟练程度。

第三部分:日文阅读理解与汉日互译(大约50分)

测试考生对日语文章的阅读理解能力以及汉日互译能力。

四、参考书目:

- 1、新版《标准日本语》的初级上下册(人民教育出版社出版)
- 2、旧版《标准日本语》的初级上下册(人民教育出版社出版)

247 二外德语

## 一、 考试的总体要求

本课程主要考查考生对作为第二外语的德语语言的掌握情况,既考查基础知识也考查运用能力。

#### 二、 考试的内容及比例

名词、代词、形容词的变格形式和各格的基本用法,占10%;

动词直陈式主动态的现在时态、现在完成时态、过去时态及其基本用法占10%;

简单句、并列复合句和简单主从复合句的结构和成分,占10%;

常用介词的主要用法,占10%;

直陈式被动态5种时态及其基本用法,占10%;

介词和连词的纵向比较及其用法,占10%;

复杂主从复合句的结构及其用法,占10%;

分词结构的组成及其用法,占10%;

虚拟语气及命令式的基本形式,占10%;

短文写作,占10%。

三、 试卷类型及比例

试卷满分为100分。

客观题选择题(4选1)为20分或30分,主观题为80分或70分。

客观题以语法词汇为主; 主观题包括语法词汇测试、德汉互译、短文理解及写作等。

四、 考试形式及时间

考试形式:笔试。考试时间:3小时。

248 二外法语

## 一、 考试的总体要求

本课程主要考查考生对作为第二外语的法语语言的掌握情况,既考查基础知识也考查运用能力。

## 二、 考试的内容及比例

动词变位形式和基本用法,占10%;

常用词汇的主要用法,占10%;

介词、连词和代词的基本用法,占 10%;

简单句、从句的结构和成分,占10%;

直陈式主动态的现在时态、过去时态及其基本用法占 10%;

直陈式被动态的基本用法,占10%;

条件式的基本用法,占10%;

虚拟式及命令式的基本形式,占10%;

翻译的方法和技巧,占10%;

短文写作,占10%。

三、 试卷类型及比例

试卷满分为100分。

客观题选择题(4选1)为20分或30分,主观题为80分或70分。

客观题以语法词汇为主; 主观题包括语法词汇测试、法汉互译、短文理解及写作等。

四、考试形式及时间

考试形式: 笔试。考试时间: 3小时。

333 教育学综合

# 一、考查目标

全日制攻读教育硕士专业学位入学考试教育综合科目考试内容包括教育学原理、中国教育史、外国教育史和教育心理学四门教育学科基础课程,要求考生系统掌握相关学科的基本知识、基础理论和基本方法,并能运用相关理论和方法分析、解决教育实际问题。

## 二、考试形式与试卷结构

(一) 试卷成绩及考试时间

本试卷满分为150分,考试时间为180分钟。

(二) 答题方式

答题方式为闭卷、笔试。

(三) 试卷内容结构

各部分内容所占分值为:

教育学原理 约60分

中国教育史 约30分

外国教育史 约30分

教育心理学 约30分

(四) 试卷题型结构

名词解释题: 6小题,每小题 5分,共30分

简答题: 4 小题,每小题 10 分,共 40 分

分析论述题: 4小题,每小题 20分,共80分

## 三、考查范围

#### 教育学原理

#### 一、考查目标

- 1、系统掌握教育学原理的基础知识、基本概念、基本理论和现代教育观念。
- 2、理解教学、德育、管理等教育活动的任务、过程、原则和方法。
- 3、能运用教育的基本理论和现代教育理念来分析和解决教育的现实问题。
- 二、考查内容
- 一、教育学概述
- (一)教育学的对象和任务

教育学的研究对象是教育现象和教育问题;教育学的任务是揭示教育规律,探讨教育价值观念和教育艺术,指导教育实践。

(二)教育学的产生和发展

教育学的萌芽、教育学的独立、教育学的发展多样化、教育学的理论深化等阶段有代表性、有影响的教育家、教育著作、教育思想和教育理论。

## 二、教育的概念

(一)教育的质的规定性

教育是有目的地培养人的社会活动。有目的地培养人,是教育这一社会现象与其他社会 现象的根本区别,是教育的本质特点。

(二)教育的基本要素

教育者、受教育者、教育中介系统等要素的涵义、地位和作用。

(三)教育的历史发展

古代教育的特点;现代教育的特点。

(四)教育概念的界定

广义教育;狭义教育。

## 三、教育与人的发展

(一) 人的发展概述

人的发展涵义;人的发展特点;人的发展的规律性。

(二)影响人的发展的基本因素

遗传在人的发展中的作用;环境在人的发展中的作用;个体的能动性在人的发展中的作用。

(三)教育对人的发展的重大作用

教育是一种有目的地培养人的社会活动;教育主要通过文化知识的传递来培养人;教育对人的发展的作用越来越大。

## 四、教育与社会发展

(一)教育的社会制约性

生产力对教育的制约; 社会经济政治制度对教育的制约; 文化对教育的制约与影响。

- (二)教育的社会功能
- 1、教育的社会变迁功能

教育的经济功能;教育的政治功能;教育的文化功能;教育的生态功能。

2、教育的社会流动功能

教育的社会流动功能的涵义;教育的社会流动功能在当代的重要意义。

- 3、教育的社会功能与教育的相对独立性
- (三)教育与我国社会主义建设

教育在我国社会主义建设中的地位和作用;科教兴国与国兴科教。

## 五、教育目的

(一)教育目的概述

教育目的的概念;教育目的的层次结构和内容结构。

(二)教育目的的理论基础

教育目的的社会制约性;教育目的的价值取向;马克思主义人的全面发展学说。

- (三) 我国的教育目的
- 1、我国教育目的的基本精神

培养"劳动者"或"社会主义建设人才";坚持全面发展;培养独立个性。

2、我国教育目的的实现

普通中小学的性质与任务;普通中小学教育的组成部分;体育、智育、德育、美育和综合实践活动等概念及其相互关系。

## 六、教育制度

(一)教育制度概述

教育制度的含义和特点;教育制度的历史发展。

## (二) 现代学校教育制度

学校教育制度的概念: 双轨学制: 单轨学制: 分支型学制: 现代学校教育制度的变革。

(三) 我国现行学校教育制度

我国现行学校教育制度的演变;我国现行学校教育制度的形态;我国现行学校教育制度的改革。

## 七、课程

## (一) 课程概述

课程及课程方案、课程标准、教科书等概念;课程理论的发展;课程发展上论争的几个主要问题。

## (二)课程设计

课程目标的设计;课程内容的设计。

(三)课程改革

世界各国课程改革发展的趋势; 我国基础教育的课程改革。

## 八、教学(上)

(一) 教学概述

教学的概念; 教学的意义; 教学的任务。

(二) 教学过程

1、教学过程的性质

教学过程是一种特殊的认识过程; 教学过程必须以交往为背景和手段; 教学过程也是一个促进学生身心发展、追寻与实现价值目标的过程。

2、学生掌握知识的基本阶段

传授/接受教学学生掌握知识的基本阶段;问题/探究教学学生获取知识的基本阶段。

3、教学过程中应当处理好的几种关系

间接经验与直接经验的关系;掌握知识和发展智力的关系;智力活动与非智力活动的关系;教师主导作用与学生主动性的关系。

#### (三) 教学原则

科学性和思想性统一、理论联系实际、直观性、启发性、循序渐进、巩固性、发展性、因材施教等教学原则的涵义和要求。

## 九、教学(下)

(四) 教学方法

1、教学方法概述

教学方法及教学方式、教学手段、教学模式、教学策略等概念; 教学方法的选择。

2、中小学常用的教学方法

讲授法、谈话法、读书指导法、练习法、演示法、实验法、实习作业法、讨论法、研究法等教学方法涵义和要求。

(五) 教学组织形式

1、教学组织形式概述

个别教学制; 班级上课制; 分组教学制。

- 2、教学的基本组织形式与辅助组织形式
- 3、教学工作的基本环节

备课:上课:课后教导工作:教学评价。

(六) 教学评价

1、教学评价概述

教学评价的概念; 教学评价的意义; 教学评价的种类。

- 2、教学评价的原则与方法
- 3、学生学业成绩的评价
- 4、教师教学工作的评价

#### 十、德育

(一) 德育概述

德育的概念; 德育的特点; 德育的功能; 德育的任务和内容。

(二) 德育过程

德育过程是教师引导下学生能动的道德活动过程;德育过程是培养学生知情信意行的过程;德育过程是提高学生自我教育能力的过程。

(三) 德育原则

理论和生活相结合、疏导、长善救失、严格要求与尊重学生相结合、因材施教、在集体中教育、教育影响一致性和连贯性等德育原则的涵义和要求。

(四)德育途径与方法

1、德育途径

思想政治课与其他学科教学、劳动与其他社会实践、课外活动和校外活动、学校共青团和少先队活动、心理咨询、班主任工作等途径。

2、德育方法

说服、榜样、锻炼、修养、陶冶、奖惩等方法的涵义和要求。

十一、班主任

(一) 班主任工作概述

班主任工作的意义与任务; 班主任素质的要求。

(二) 班集体的培养

班集体的教育功能; 班集体与学生群体; 集体的发展阶段; 培养集体的方法

(三) 班主任工作的内容和方法

了解和研究学生;教导学生学好功课;组织班会活动;组织课外活动、校外活动和指导课余生活;组织学生的劳动;通过家访建立家校联系;协调各方面对学生的要求;评定学生操行;做好班主任工作的计划与总结。

十二、教师

(一) 教师劳动的特点、价值与角色扮演

1、教师劳动的特点

教师劳动的复杂性; 教师劳动的示范性; 教师劳动的创造性; 教师劳动的专业性。

2、教师劳动的价值

教师劳动的社会价值; 教师劳动的个人价值; 正确认识和评价教师的劳动。

- 3、教师的权利与义务
- 4、教师职业的角色扮演

教师的"角色丛"; 教师角色的冲突及其解决; 社会变迁中教师角色发展的趋势。

(二) 教师的素养

高尚的师德; 宽厚的文化素养; 专门的教育素养; 健康的心理素质。

#### (三) 教师的培养与提高

教师的培养和提高的紧迫性; 教师个体专业性发展的过程; 培养和提高教师素养的主要途径。

十三、学校管理

(一) 学校管理概述

学校管理的概念: 学校管理的构成要素: 学校管理体制: 校长负责制。

(二) 学校管理的目标与过程

学校管理目标; 学校管理过程的基本环节及其相互关系。

(三)学校管理的内容和要求

教学管理: 教师管理: 学生管理: 总务管理。

(四)学校管理的发展趋势

学校管理法治化; 学校管理人性化; 学校管理校本化; 学校管理信息化。

#### 主要参考书

王道俊、郭文安主编:《教育学》,人民教育出版社 2009 年。

中国教育史

## 一、考查目标

- 1、系统掌握中国教育史的基本知识,把握教育思想演变、教育制度发展、教育实施进程的基本线索,特别是主要教育家的教育思想、重要的教育制度、重大的教育事件。
- 2、认真阅读和准确理解有关中国教育史的基本文献,特别是其中的代表性材料,培养严谨、踏实的学风,掌握学习教育历史的基本方法。
- 3、能够运用教育史学的基本原理分析、评价中国历史上的教育现象,探讨有益于现实 教育改革与发展的理论启示。
- 4、通过历史上教育人物矢志探索教育的精神,培养热爱教育事业、热爱祖国和人民的 情感。

## 二、考查范围

一、西周官学制度的建立与"六艺"教育的形成 "学在官府":大学与小学;国学与乡学;家庭教育:"六艺"。

- 二、私人讲学的兴起与传统教育思想的奠基
  - 1、私人讲学的兴起

私人讲学兴起;诸子百家的私学;齐国的稷下学宫。

2、孔丘的教育实践与教育思想

创办私学与编订"六经";"庶、富、教":教育与社会发展;"性相近也,习相远也":教育与人的发展;"有教无类"与教育对象;"学而优则仕"与教育目标;以"六艺"为教育内容;教学方法:因材施教、启发诱导、学思行结合;论道德教育;论教师;历史影响。

3、孟轲的教育思想

思孟学派:"性善论"与教育作用:"明人伦"与教育目的:人格理想与修养学说:"深造自得"

的教学思想。

4、荀况的教育思想

荀况与"六经"的传授;"性恶论"与教育作用;以培养"大儒"为教育目标;以"六经"为教学内容;"闻见知行"结合的教学方法;论教师。

5、墨家的教育实践与教育思想

"农与工肆之人"的代表;"素丝说"与教育作用;以"兼士"为教育目标;以科技知识和思维训练为特色的教育内容;主动、创造的教育方法。

- 6、法家的教育思想
- "人性利己说"与教育作用;禁私学;"以法为教","以吏为师"。
  - 7、战国后期的教育论著

《大学》: "三纲领"、"八条目";《中庸》: "尊德性"与"道问学"、学问思辨行;《学记》: 学制与学年、教育教学的原则与方法、教师。

儒学独尊与读经做官教育模式的形成

- 1、"独尊儒术"文教政策的确立
- "罢黜百家,独尊儒术":兴太学以养士:实行察举,任贤使能。
- 2、封建国家学校教育制度的建立

经学教育;太学;鸿都门学;郡国学。

董仲舒的教育思想

《对贤良策》与三大文教政策;论人性与教育作用;论道德教育。

#### 四、封建国家教育体制的完备

1、魏晋南北朝官学的变革

西晋的中央官学;南朝宋的中央官学;北魏的中央官学。

2、隋唐学校教育体系的完备

文教政策的探索与稳定;中央政府教育管理机构确立;中央和地方官学体系完备;学校教学和管理制度严格;私学发展;学校教育制度的特点。

3、科举制度的建立

科举制度的产生与发展;考试的程序、科目与方法;科举制度与学校的关系;科举制度 的影响。

4、颜之推的教育思想

颜之推与《颜氏家训》;论士大夫教育;论家庭教育。

5、韩愈的教育思想

道统说与师道观;"性三品说"与教育作用;论人才的培养与选拔。

#### 五、理学教育思想和学校的改革与发展

1、科举制度的演变与学校教育的改革

科举制度的演变;学校沦为科举附庸;宋代"兴文教"政策;"苏湖教法";北宋三次兴学与"三舍法";积分法;"六等黜陟法";"监生历事";社学。

2、书院的发展

书院的产生与发展;《白鹿洞书院揭示》与书院教育宗旨; 东林书院与书院讲会; 诂经精舍、学海堂与书院学术研究; 书院教育的特点。

3、私塾与蒙学教材

私塾的发展、种类和教育特点;蒙学教材的发展、种类和特点。

4、朱熹的教育思想

朱熹与《四书章句集注》;"明天理,灭人欲"与教育的作用、目的;论"大学"与"小学"; "朱子读书法"。

5、王守仁的教育思想

"致良知"与教育作用;"随人分限所及"的教育原则;论教学;论儿童教育。

## 六、早期启蒙教育思想

1、倡导新的教育主张

"公其非是于学校"与学校的作用;"日生日成"的人性与教育;义利合一的教育价值观。

2、颜元的学校改革思想

颜元与漳南书院;"实德实才"的培养目标;"六斋"与"实学"教育内容;"习行"的教学方法。

## 七、中国教育的近代转折

1、教会学校的举办和西方教育理念的引入

英华书院与马礼逊学校;教会学校的发展;"学校与教科书委员会"与"中华教育会";教会学校的课程。

2、洋务教育的创立和发展

洋务学堂的兴办、类别与特点; 京师同文馆; 福建船政学堂; 幼童留美与派遣留欧。

3、张之洞的"中体西用"教育思想

"中体西用"思想的形成与发展;张之洞与《劝学篇》;"中体西用"思想的历史作用和局限。

## 八、近代教育体系的建立

1、维新派的教育实践

兴办学堂; 兴办学会与发行报刊。

2、"百日维新"中的教育改革

创办京师大学堂;书院改办学堂;改革科举制度。

3、康有为的教育思想

维新运动中的教育改革主张;《大同书》的教育理想。

4、梁启超的教育思想

"开民智"、"伸民权"与教育作用;培养"新民"的教育目的。

5、严复的教育思想

"鼓民力"、"开民智"、"兴民德"的"三育论";"体用一致"的文化教育观。

6、清末教育新政与近代教育制度的建立

"壬寅学制"和"癸卯学制"的颁布;废科举,兴学堂;建立教育行政体制;确定教育宗旨;留日高潮与"庚款兴学"。

## 九、近代教育体制的变革

1、民国初年的教育改革

制定教育方针;颁布"壬子癸丑学制"。

2、蔡元培的教育实践与教育思想

"五育并举"的教育方针;改革北京大学的教育实践;教育独立思想。

3、新文化运动影响下的教育思潮和教育运动

新文化运动抨击传统教育促进教育观念变革; 平民教育运动; 工读主义教育运动; 职业

教育思潮; 勤工俭学运动; 科学教育思潮; 国家主义教育思潮。

4、学校教学方法的改革与实验

现代西方教学理论在中国的传播;设计教学法;"道尔顿制";"文纳特卡制"。

5、1922年"新学制"

"新学制"的产生过程;"新学制"的标准和体系;"新学制"的特点;"新学制"的课程标准; "新学制"评价。

6. 收回教育权运动

教会教育的扩张与变革; 收回教育权运动。

十、南京国民政府的教育建设

1、教育宗旨与教育方针的变迁

党化教育: "三民主义"教育宗旨: "战时须作平时看"的教育方针。

2、教育制度改革

大学院和大学区制的试行;"戊辰学制"的颁行。

3、学校教育的管理措施

训育制度;中小学校的童子军训练;高中以上学生的军训;颁布课程标准,实行教科书审查制度;实行毕业会考。

4、学校教育的发展

幼儿教育;初等教育;中等教育;高等教育;抗日战争时期的学校西迁。

十一、中国共产党领导下的教育

1、新民主主义教育的发端

工农教育;湖南自修大学;上海大学;农民运动讲习所;李大钊的教育思想;恽代英的教育思想。

2、新民主主义教育方针的形成

苏维埃文化教育总方针,抗日战争时期中国共产党的教育方针政策;"民族的、科学的、 大众的"文化教育方针。

3、革命根据地的干部教育

干部在职培训;干部学校教育;中国人民抗日军政大学。

4、革命根据地的群众教育和学校教育

群众教育;根据地的小学教育;解放区中小学教育的正规化;解放区高等教育的整顿与 建设。

5、革命根据地教育的基本经验

教育为政治服务;教育与生产劳动相结合;依靠群众办教育。

十二、现代教育家的教育探索

1、杨贤江的马克思主义教育理论

论教育的本质;"全人生指导"与青年教育。

2、黄炎培的职业教育思想与实践

职业教育的探索; 职业教育思想体系。

3、晏阳初的乡村教育试验

"四大教育"与"三大方式"; "化农民"与"农民化"。

4、梁漱溟的乡村教育建设

乡村建设和乡村教育理论;乡村教育的实施。

5、陶行知的"生活教育"思想与实践

生活教育实践:晓庄学校、山海工学团、"小先生制":"生活教育"思想体系。

6、陈鹤琴的"活教育"探索

儿童教育和"活教育"实验;"活教育"思想体系。

## 主要参考书

孙培青主编:《中国教育史》,华东师范大学出版社 2009 年版 王炳照等著:《简明中国教育史》,北京师范大学出版社 2007 年版

## 外国教育史

## 一、考查目标

- 1、掌握外国教育思想和制度发展的基本史实,了解重要的教育思想家、重要的教育制度和重大的教育事件,理解教育历史发展的线索。
- 2、了解外国教育史的基本文献,认真阅读和理解国外名著。
- 3、能运用历史方法和知识分析教育现象。
- 4、通过外国历史上教育人物矢志探索教育的精神,培养热爱教育 事业、热爱祖国和人民的情感。
  - 二、考查范围
- 一、古希腊教育
  - (一) 古风时代的教育 斯巴达教育。雅典教育。
  - (二) 古典时代的教育
- 1、"智者派"的教育活动与观念。
- 2、苏格拉底的教育活动与思想:美德即知识;"苏格拉底方法"。
  - 3、柏拉图的教育活动与思想:学园;学习即回忆;《理想国》。
  - 4、亚里士多德的教育活动与思想:吕克昂:灵魂论:自由教育。

#### 二、古罗马教育

- (一) 共和时期的罗马教育
- (二)帝国时期的罗马教育
- (三) 古罗马的教育思想
- 1、西塞罗的教育思想
- 2、昆体良的教育思想
- 三、西欧中世纪教育
- (一) 基督教教育
- 1、基督教教育的机构与内容
- 2、基督教教育的特点
- (二) 世俗教育
- 1、宫廷学校
- 2、骑士教育
- 3、城市学校与行会学校
- 4、中世纪大学

- (三) 拜占庭和阿拉伯教育
- 1、主要教育机构
- 2、历史影响
  - 四、文艺复兴时期的教育
  - (一)人文主义教育家
  - 1、弗吉里奥: 2、维多里诺: 3、伊拉斯谟: 4、莫尔: 5、蒙田
  - (二)人文主义教育的特征、影响和贡献
  - 五、宗教改革时期的教育
  - (一)新教的教育思想与实践
  - 1、马丁 路德的教育实践与思想
  - 2、加尔文的教育实践与思想
  - (二) 天主教教育
  - 1、耶稣会学校

## 六、欧美主要国家和日本的教育发展

## (一) 英国教育的发展

公学; 贝尔一兰开斯特制; 1870 年《初等教育法》(福斯特法); 《巴尔福教育法》; 《哈多报告》; 《1944 年教育法》; 《1988 年教育改革法》。

(二) 法国教育的发展

启蒙运动时期国民教育设想;《帝国大学令》与大学区制;《费里教育法》;《郎之万一瓦隆教育改革方案》; 1959 年《教育改革法》。

(三)德国教育的发展

国民教育的兴起;巴西多与泛爱学校;实科中学;柏林大学与现代大学制度的确立;德意志帝国与魏玛共和国时期的教育;《改组和统一公立普通学校教育的总纲计划》。

(四)俄国及苏联教育的发展

彼得一世教育改革;《国民学校章程》;苏联建国初期的教育管理体制改革;(2)《统一劳动学校规程》; 20世纪 20年代的学制调整和教学改革实验;20世纪 30年代教育的调整、巩固和发展。

(五)美国教育的发展

殖民地普及义务教育;贺拉斯•曼与公立学校运动;《莫雷尔法案》;六三三学制;初级学院运动;《国防教育法》;《中小学教育法》;生计教育;恢复基础运动;《国家在危机中》。 (六)日本教育的发展

明治维新时期教育改革;军国主义教育体制的形成和发展;《教育基本法》和《学校教育法》; 20 世纪 70-80 年代的教育改革。

## 七、欧美教育思想的发展

(一) 夸美纽斯的教育思想

论教育的目的和作用;论普及教育、泛智学校、统一学制及其管理实施;论学年制和班级授课制;论教育适应自然的原则。

(二) 洛克的教育思想

白板说:绅士教育。

(三) 卢梭的教育思想

自然教育理论及其影响;公民教育理论。

(四) 裴斯泰洛齐的教育思想

教育实践活动;论教育目的;论教育心理学化;论要素教育;初等学校各科教学法;教育与生产劳动相结合。

(五)赫尔巴特的教育思想

教育思想的理论基础; 道德教育理论; 课程理论; 教学理论; 赫尔巴特教育思想的传播。

(六)福禄贝尔的教育思想

教育适应自然原则; 幼儿园; 恩物; 作业。

(七) 斯宾塞论教育

生活准备说;知识价值论;科学教育论;课程论

(八) 马克思和恩格斯的教育思想

对空想社会主义教育思想的批判继承;论人的全面发展与教育的关系;论教育与生产劳动相结合的重大意义。

(九) 19 世纪末至 20 世纪前期的教育思潮和教育实验

新教育运动历程;新教育运动中的著名实验;梅伊曼、拉伊的实验教育学;凯兴斯泰纳的"公民教育"与"劳作学校"理论;蒙台梭利的教育思想;进步教育运动历程;昆西教学法;有机教育学校;葛雷制;道尔顿制;文纳特卡计划;设计教学法。

(十) 杜威的教育思想

论教育的本质与目的;论课程与教材;论思维与教学方法;论道德教育;杜威教育思想的影响。

(十一) 现代欧美教育思潮

改造主义教育;要素主义;永恒主义;新行为主义教育;结构主义教育;终身教育思潮;现代人文主义教育思潮。

(十二) 苏联教育思想

马卡连柯的教育思想; 凯洛夫教育学体系; 赞科夫的教学理论; 苏霍姆林斯基的教育理论。

主要参考书目:

张斌贤主编,王晨副主编:《外国教育史》,教育科学出版社2008年。

#### 教育心理学

- 一、考查目标
- 1、了解教育心理学的发展历程及趋势,理解和掌握教育心理学的基本概念、基本原理 及其对学校教育工作的启示。
- 2、运用教育心理学的基本规律和主要理论,说明和解释有关教育现象,解决有关教育 教学的实际问题。
- 二、考查范围
- 一、教育心理学概述
- (一)教育心理学的研究对象与任务

教育心理学的研究对象;教育心理学的研究任务;

(二)教育心理学的历史发展与趋势

教育心理学的起源、发展过程、研究趋势

## 二、心理发展与教育

(一) 心理发展及其规律

心理发展的内涵; 认知发展的一般规律; 人格发展的一般规律; 心理发展与教育的关系。

(二)认知发展理论与教育

皮亚杰的认知发展阶段理论:认知发展的实质;影响认知发展的因素;认知发展的阶段;认知发展与教学的关系。

维果斯基的文化历史发展理论:文化历史发展理论;心理发展的本质;教学与认知发展的关系。

认知发展理论的教育启示。

(三) 人格发展理论与教育

埃里克森的心理社会发展理论;柯尔伯格的道德发展阶段理论;人格发展理论的教育含义。 (四)社会性发展与教育

社会性发展的内涵; 亲社会行为的发展阶段、影响因素与习得途径; 攻击行为及其改变方法; 同伴关系的发展及培养。

(五) 心理发展的差异性与教育

认知差异与教育:人格差异与教育:性别差异与教育。

## 三、学习及其理论

(一) 学习的内涵与分类

学习的实质; 学习的种类; 学生学习的特点。

(二) 行为主义的学习理论

桑代克的联结说; 巴甫洛夫的经典性条件反射说; 斯金纳的操作性条件反射说; 班杜拉的观察学习理论及其教育应用。

(三)认知派的学习理论

布鲁纳的认知一发现说:认知学习观;结构教学观;发现学习。

奥苏伯尔的有意义接受说:有意义学习的实质和条件;认知同化理论与先行组织策略;接受学习的界定及评价。

加涅的信息加工学习理论 学习的信息加工模式; 学习阶段及教学设计。

(四)人本主义的学习理论

罗杰斯的自由学习观,学生中心的教学观。

(五)建构主义的学习理论

建构主义的思想渊源与理论取向;建构主义学习理论的基本观点:知识观、学生观、教学观;认知建构主义学习理论与应用;社会建构主义学习理论与应用。

四、学习动机

1、学习动机的实质及作用

学习动机的内涵、学习动机的分类; 学习动机的作用。

2、学习动机的主要理论

学习动机的强化理论;学习动机的需要层次理论;学习动机的认知理论:期望一价值理论;成败归因理论;自我效能感理论;自我价值理论。

3、学习动机的培养与激发

影响学习动机的因素

五、知识的学习

(一) 知识及知识获得的机制

知识含义及其类型:知识获得的机制:陈述性知识获得的机制:程序性知识获得的机制。

(二)知识的理解

知识理解的类型;知识理解的过程;影响知识理解的因素。

(三)知识的整合与应用

知识的整合:记忆及其种类;遗忘的特点与原因;促进知识整合的措施;知识的应用与迁移:知识应用的形式;知识迁移的种类与理论;促进知识应用与迁移的措施。

六、技能的形成

(一) 技能及其作用

技能及其特点; 技能的类型; 技能的作用。

(二)心智技能的形成与培养

心智技能的原型模拟:心智技能的形成过程;心智技能的培养方法。

(三)操作技能的形成与训练

操作技能的主要类型;操作技能的形成过程;操作技能的训练要求。

## 七、学习策略及其教学

(一) 学习策略的性质与类型

学习策略的概念; 学习策略的结构。

(二)认知策略及其教学

注意策略;精细加工策略;复述策略;编码与组织策略。

(三)元认知策略及其教学

元认知及其作用;元认知策略。

(四)资源管理策略及其教学

时间管理策略;努力管理策略;学业求助策略

八、问题解决能力与创造性的培养

(一) 有关能力的基本理论

传统智力理论:二因素理论,群因素论,流体智力与晶体智力理论,.智力结构理论;加登纳的多元智力理论;斯滕伯格的成功智力理论。

(二)问题解决的实质与过程

问题解决的内涵; 问题解决的心理过程。

(三)问题解决能力的培养

影响问题解决的因素:知识经验、个体的智能与动机、问题情景与表征方式、思维定势与功能固着、原型启发与酝酿效应;有效问题解决者的特征;问题解决能力的培养措施。

(四) 创造性及其培养

创造性的内涵; 创造性的心理结构; 创造性的培养措施。

九、社会规范学习与品德发展

(一) 社会规范学习与品德发展的实质

社会规范学习的含义与特点; 品德发展的实质。

(二) 社会规范学习的心理过程

规范学习的心理过程: 遵从、认同、内化。

(三) 品德的形成过程与培养

影响品德形成的因素; 道德认知的形成与培养; 道德情感的形成与培养; 道德行为的形成与培养。

(四) 品德不良的矫正

品德不良的含义与类型;品德不良的成因分析;品德不良的纠正与教育。

## 十、心理健康及其教育

(一) 心理健康的内涵

心理健康的实质、标准;中小学生常见心理健康问题;心理健康与心理素质的关系。

(二)心理健康教育的目标与内容

心理健康教育的目标;心理健康教育的内容。

(三) 心理健康教育的途径

心理健康教育的途径: 专题训练; 咨询与辅导; 学科渗透。

## 主要参考书:

- 1、张大均主编:《教育心理学》,人民教育出版社 2005 年。
- 2、陈琦、刘儒德主编:《教育心理学》,高等教育出版社 2005 年。

【说明:本《大纲》由全国教育硕士专业学位教育指导委员会组织专家编写,其中教育学原理部分由华中师范大学涂艳国等教授编写,教育心理学部分由西南大学张大均、郭成教授编写,中国教育史部分由华东师范大学杜成宪教授编写,外国教育史部分由北京师范大学张斌贤教授和王晨副教授编写】

344 风景园林基础

一、考试总体要求:

能正确回答有关风景园林学科的基础知识和理论问题,评论应具有自己的思想和观点。

二、考试内容:

有关风景园林学科的基础知识和理论问题

三、考试题型:

一般分为简答题和论述题两个部分,简答题约占40%,论述题约占60%。

四、考试形式及时间:

考试形式均为笔试,考试时间为3小时

五、参考书目:

1、《中国古典园林分析》彭一刚著,中国建筑工业出版社; 2、《西方现代景观设计的理论与实践》王向荣、林箐著,中国建筑工业出版社; 3、《景观生态规划原理》王云才编著,中国建筑工业出版社; 4、《中国古典园林史》(第二版)周维权著,清华大学出版社; 5、《外国造园艺术》陈志华,河南科学技术出版社; 6、《西方园林》郦芷若,朱建宁,河南科学技术出版社; 7、《景观生态学——格局、过程、尺度与等级》第二版,邬建国著,高等教育出版社; 8、《植物造景》苏雪痕编,中国林业出版社; 9、《城市园林绿地规划与设计》同济大学李铮生主编,中国建筑工作出版社

349 药学综合

## 一、考试总体安排

- 1. 试卷包括有机化学、分析化学、生物学/生物化学三部分考题,每部分150分。考生在其中任选两部分作答,共计300分。
- 2. 每部分考题 150 分中,120 分为双语考题,中英文作答皆可;30 分为英文考题,需以英文作答。

## 二、考试总体要求

#### (一) 有机化学部分

较系统地掌握有机化学的基本知识、基本概念。掌握各类有机化学反应,能够写出主要产物的结构式或反应条件,并能写出反应过程机理,掌握较为复杂化合物的合成方法。

#### (二)分析化学部分

掌握对化合物的定性、定量分析方法,具备综合运用分析化学知识分析问题、解决问题的能力。

#### (三) 生物学/生物化学部分

- 1.结构和功能:生物由细胞组成。细胞是微小、复杂的结构,包含在膜内,是生命活动的最小单位。有些生物是单细胞生物,有些包括人类是多细胞生物。基本的细胞结构是所有生物所共有的。
- 2.生殖和发育: 所有生命体都有生殖、生长和发育。生殖是生物复制更多的自己的过程。非生命体,例如岩石,碎解为更多部分,但这与生殖中产生整个、完整的生命体是不一样的。3.代谢: 所有生物都为了能量而代谢。生命需要能量。代谢是给生命过程提供动力所需要的化学反应的总和。我们代谢我们的早餐,为我们好好过一天提供能量,包括生长和身体的保持。
- 4.内环境稳定: 所有生物必须对环境有所反应以维持其内部的稳定。这种稳定的内部条件维持就是内环境稳定。
- 5.遗传: 所有生物使用核酸 (DNA 或 RNA) 将特征从一代传到下一代,这种情况称为遗传。

#### 三、考试内容与比例

## (一) 有机化学部分

- 1. 掌握有机化学中的基本概念、规则和原理。掌握各类有机化合物(按官能团分类)的结构及基本反应。(本部分约占 5-20%)
- 2. 掌握电子效应、立体效应、中间体稳定性、有机化合物酸碱性等物理性能,以及它们对有机化合物性质的影响。(本部分约占 5-20%)
- 3. 掌握各种化学反应的反应机理、反应条件、及化合物的制备方法,能够写出主要反应产物、反应条件及反应机理。(本部分约占 30-70%)
- 4. 掌握立体化学的基本概念,能够判断或写出反应产物的正确立体结构。(本部分约占 5-20%)

#### (二)分析化学部分

- 1. 掌握化学定量分析中容量分析法的基本原理;掌握分析化学中的离子平衡、多元络合物、溶剂萃取、络合滴定、非水滴定、配位滴定、氧化-还原滴定、沉淀滴定、重量分析法等的基础知识及应用。能熟练地应用以上方法解决实际问题。(本部分约占 30-35%)
- 2. 掌握分析化学中数理统计方法。(本部分约占 10-15%)

- 3. 掌握分析化学中主要仪器分析方法(本部分约占50-55%):
- (1) 电位法及永停滴定法: (0-10%)
- (2)光谱法-紫外可见分光光度法;荧光分光光度法;红外分光光度法;原子吸收分光光度法等的基础理论、定性、定量应用及定量计算含量的方法;(0-10%)
- (3) 核磁共振波谱法的基本原理、定性分析应用的有关基础知识; (0-10%)
- (4)色谱分析的基本概念、原理,经典色谱法和气相色谱法、高效液相色谱法的基础理论,应用实践,定性原理,定量计算;(15-20%)
- (5) 电泳(包括凝胶电泳和毛细管电泳)分析的基本原理、技术特征和典型应用(0-10%);
- (6) 质谱法(特别是各种离子化)的基本原理及其在定性分析中的应用(0-10%)。
- (三) 生物学/生物化学部分

1.结构和功能:生物由细胞组成。细胞是微小、复杂的结构,包含在膜内, 是生命活动的最小单位。有些生物是单细胞生物,有些包括人类是多细胞生物。基本的细胞结构是所有生物所共有的。(15%)

a. 大分子的结构

四类大分子(碳水化合物、脂类、蛋白质和核酸)是一个细胞结构和功能所必需的。

b. 亚细胞器和它们的功能

亚细胞组份是组织生命活动功能区的关键。事实上,在细胞内存在特殊的功能区是真核细胞的一个主要特征。虽然细胞核是一个确定的结构,几乎所有真核细胞含有原核细胞所没有的各种结构。这些结构的多数被1或2层膜所包绕,使其与周围的其它细胞质分开。这些组份允许在单个细胞内可以存在各种环境,每一种环境可以有自己的pH和离子组成,使得细胞可以能够比在同一环境更为有效地执行特定的功能。

c. 细胞骨架和运动

细胞骨架是细胞内维持细胞形态和功能的支架。这些支架是由三种主要成分组成的动态的结构(微丝、微管和中间丝),这些结构可以根据细胞的需要而快速的组装和拆装.借助于细胞骨架的改变,细胞移动,在细胞分裂是改变形态,在细胞内转运物质。

2.生殖和发育: 所有生命体都有生殖、生长和发育。生殖是生物复制更多的自己的过程。非生命体,例如岩石, 碎解为更多部分, 但这与生殖中产生整个、完整的生命体是不一样的。(20%)

a. 细胞周期和增殖

细胞周期或细胞分裂周期是发生在细胞内一系列事件导致其分裂和复制产生两个子代细胞。 在真核细胞中,细胞周期可以分为三个阶段;细胞间期、有丝分裂和 cytokinesis。

b. 胚胎发育

胚胎形成是胚胎形成和发育的过程。这个过程从卵子与一个精子结合受精,形成受精卵,一种双倍体细胞开始。受精卵经过有丝分裂而没有明显生长(也就是分裂过程),细胞分化,产生多细胞胚胎发育。

c. 肿瘤

3.代谢: 所有生物都为了能量而代谢。生命需要能量。代谢是给生命过程提供动力所需要的化学反应的总和。我们代谢我们的早餐,为我们好好过一天提供能量,包括生长和身体的保持。(15%)

a.生物能量(细胞呼吸)

细胞呼吸是发生在生物体内,将食物来源的生化能转化为三磷酸腺苷(ATP)的代谢反应和过程。

## b. 酶作为生物催化剂

酶是大分子生物催化剂。酶加速或催化化学反应。它通过降低反应的活化能而提高反应速率。 c. 代谢

代谢是活的生命体在细胞内,生命维持的化学转化。这些酶催反应使得生命体生长,繁殖,维持结构和对环境反应。

4.内环境稳定: 所有生物必须对环境有所反应以维持其内部的稳定。这种稳定的内部条件维持就是内环境稳定。(30%)

#### a. 内分泌系统

内分泌系统是指一个生命体的腺体总和,这些腺体分泌激素直接到血液循环,并被达到远处的靶器官。

b. 细胞信号和信号转导:细胞间的联络

细胞信号是复杂的联络系统的一部分,控制细胞的基本细胞活动和协调细胞间的作用。细胞能够感受并对它的微环境做出正确的反应是发育、组织修复,免疫,以及正常组织的内环境稳定的基础。

#### c. 免疫系统

免疫系统是生命体内抵抗疾病的许多生物结构和过程的系统。为了正常发挥功能,免疫系统必须发现不同的物质,称为病原菌,从病毒到寄生虫,将这些病原菌与生命体自身的健康组织区分开来。在不同种属,免疫系统可以分成几个亚系统,比方说,天然免疫与获得性免疫系统,或者体液免疫与细胞免疫。

5.遗传: 所有生物使用核酸 (DNA 或 RNA) 将特征从一代传到下一代,这种情况称为遗传。 (20%)

#### a. 基因和基因组的性质

基因组是单个细胞的所有基因数据。它包括细胞核内的基因,也包括线粒体 DNA。基因是基因组的一部分,编码一个蛋白。基因有各种密码子组成。每一个密码子编码一种氨基酸(众多氨基酸连接在一起形成蛋白质)。每个密码子由三个相邻的核苷酸组成。

#### b. DNA 复制和修复

DNA 复制是从一个 DNA 分子产生两个完全相同的复制品的过程。这个生物过程发生在所有活的生命体中,是生物遗传的基础。DNA 由双链组成,每条链作为模板,合成一条互补链,这一过程称为半保留复制。细胞的读码验证和错配检测机制保证了 DNA 复制的几乎完美的保真性。

DNA 修复是细胞发现并修改基因组中 DNA 分子的损伤过程。

c. 基因表达: 从转录到翻译

基因表达是基因所含的信息用来合成功能基因产物的过程。这些产物通常是蛋白质。但是,非蛋白编码基因,例如 tRNA 或 snRNA 基因,这些基因的产物是功能性 RNA。

## 四、试卷题型及比例

### (一) 有机化学部分

写产物及反应条件题、选择题、简答题,反应机理题、合成题。题型不一定每次命题同时全有,其中:选择题或写产物及反应条件题约占40%,简答题约占20%,反应机理题约占20%。 合成题约占20%。

#### (二)分析化学部分

名词解释和简答题占 10-30%,选择题、判断题、填空题和计算题不一定每次命题同时全有,

所占比例也有变化,约10-40%,综合论述题占30-50%。

## (三) 生物学/生物化学部分

名词解释(双语)、判断题(双语)、选择题(双语)、填空题(双语)、简答题(双语)、综合论述题(英文),以上题型可交替运用(中英文双语出题)。

## 五、考试形式及时间

- 1. 考试形式: 笔试, 每部分考题 150 分钟, 120 分为双语考题, 中英文作答皆可; 30 分为英文考题, 需以英文作答。
- 2. 考试时间: 三小时。

## 六、主要参考教材

(一) 有机化学部分

- 1. 邢其毅等,《基础有机化学(第二版)》(上、下册),北京:高等教育出版社,1993;
- 2. 倪沛洲主编,《有机化学》(供药学类专业用),人民卫生出版社,最新版。
- (二)分析化学部分
- 1.《分析化学》,李发美主编,第七版,人民卫生出版社,最新版;
- 2.《药物分析》, 杭太俊主编, 第七版, 人民卫生出版社, 最新版;
- 3.《仪器分析》,朱明华、胡坪编,第四版,高等教育出版社。
- (三) 生物学/生物化学
- 1.《现代生物学》胡玉佳主编,高等教育出版社,施普林格出版社,最新版;
- 2.《现代生物化学》全一册,黄熙泰、于自然、李翠凤等编著,化学工业出版社,2012年9月第三版;
- 3. Biology (8<sup>th</sup> Ed): Campbell & Reece, Benjamin-Cummings Pub Co(2009).

## Additional Readings:

Essential Cell Biology (4<sup>th</sup> Ed): Alberts et al., Garland Science (2014).

354 汉语基础

# 汉语基础考试大纲

# 一、考试的总体要求

汉语基础考试是汉语国际教育硕士生入学考试科目之一,是由汉语国际教育硕士专业学位教育指导委员会统一制定考试大纲,教育部授权的各汉语国际教育硕士生招生院校自行命题的选拔性考试。本考试大纲的制定力求反映汉语国际教育硕士专业学位的特点,科学、公平、准确、规范地测评考生的相关知识基础、基本素质和综合能力。汉语基础考试的目的是测试考生的汉语语言学相关基础知识和汉语语言分析及运用能力。

# 二、考试的内容及比例

- 1、汉语语言学基础知识占80分
- 2、汉语应用能力占40分
- 3、汉语语言分析占30分

# 三、试卷题型及比例

试卷题型包括三种:名词解释、简答和分析论述,其比例分别为:30分,40分和80分.

# 四、考试形式

# (一)考试时间

考试时间为 180 分钟。

## (二)答题方式

答题方式为闭卷、笔试。

试卷由试题和答题纸组成。答案必须写在答题纸相应的位置上。

## (三)试卷满分及考查内容分数分配

试卷满分为 150 分。其中汉语语言学基础知识 80 分,汉语应用能力 40 分, 汉语语言分析 30 分。

# 五、参考书目

- 1、《现代汉语》(黄伯荣、廖序东,第四版,高等教育出版社)
- 2、《古代汉语》(王力主编,中华书局)
- 3、《语言学纲要》(叶蜚声、徐通锵,北京大学出版社)

355 建筑学基础

#### 一、考试的总体要求:

考试内容包括《建筑历史》(含中、外建筑史)和《建筑构造》两个部分。考试出题以主要参考书涉及的内容为主,不出偏题怪题,但需要考生在参考书范围内能够触类旁通,关联理解,按研究生考试要求体现学习中自我提高的能力。

- 二、 考试的内容及比例
- 1. 中国建筑史和外国建筑史部分
- (1) 考试内容及要求

中国建筑史和外国建筑史两大部分一般都含有简答或名词解释、绘简图、叙述和评析等内容。在许多情况下绘图和述评可能是综合要求的,需要学生认真审题。

- (2) 试卷题型
- ①中国建筑史:

简答或名词解释与绘图主要内容包括著名建筑和建筑技术、重要建筑史实;典型建筑平面、立面、剖面(结构)、屋顶和建筑类型形象及著名建筑作品形象。阅读理解与思考述评题主要内容为中国古代建筑,亦可包括近现代建筑同古代传统的关联。要求考生一方面了解中国建筑发展中形成的各种法式规则及其社会文化意义,了解中国建筑的材料构造技术对造型的影响;另一方面了解中国建筑的基本类型、它们的形成过程、典型特征和现有著名实物,能从各时代作品到演变、从群体到单体、从结构到装饰对它们做出叙述与评论。

中国建筑的木结构和建筑群体在建筑史上重要地位。有关构架方式和群体(包括城市和园林)在中国建筑史的特点应得到考生的重视。

#### ②外国建筑史:

外国建筑史以西方史为主,但作为基本史实考察,也可能在较少的分数内涉及古埃及等其他地区。史实考察范围为从奴隶社会至 20 世纪 70 年代,一些考题要求联系当代。

绘图题要求以草图形式比较准确地表达典型历史建筑风格或著名作品的平、立、剖面或结构与造型特征;简答题内容包括历史时间,主要建筑风格、建筑思潮及其历史文化背景与艺术特点,著名人物与观点,著名作品特征等各方面史实。思考题要求考生在掌握前两项考察知识的基础上,能流畅地联系当代建筑艺术发展,对历史上的建筑形式特点、建筑艺术观点等做出分析评价。

- 2. 建筑构造部分:
- (1)考试内容及要求:有关建筑组成及构件的内容和相关建筑节能、绿色建筑等技术内容。 ①能准确地理解和解释建筑构造相关的各种名词和基本概念。
- ②能正确、清楚地表述建筑各组成部分的功能、构成原理、构造设计原则和方法;特殊构造做法及判断常见构造设计的错误做法和改正措施。
- ③根据给定的条件(绘图或文字),按要求正确设计和绘制相应的构造详图,并按施工图深度正确表达构造做法、材料、比例、尺寸及标注。
- (2) 试卷题型:

基本概念中包括:判断、填空、名词解释;根据文字条件作图、补图、改错图;根据文字条

件或指定部位进行构造详图设计和绘制。

三、试券题型及比例

1. 中国建筑史和外国建筑史:满分80分。

要求考生比较全面地了解建筑历史发展演变的进程,掌握不同国家和地区、不同政治、经济、思想、文化背景,以及不同技术条件下的各种建筑特点;能够分析历史上各种建筑创作思想、总结传统经验以适应现实需要。

考生应在了解基本史实的基础上,具有良好的阅读理解、叙述、绘图与综合分析能力;既能从特定历史阶段角度,又能从发展演变角度认识建筑设计思想与作品;既能叙述与描绘具体建筑思想与作品特点,又能具备历史传统对当今建筑起到怎样影响的知识。

2. 建筑构造: 满分70分。

## 一般要求:

掌握中小型民用建筑构造基本原理和方法;掌握常用建筑材料的种类及其基本性能;了解建筑工业化以及大型公共建筑构造的一般构造原理和基本构造方法;

能根据方案设计图综合运用建筑构造理论和方法,建筑材料及一般结构知识进行一般中、小型民用建筑的构造设计、完成平、立、剖面及部分构造详图的设计。了解和掌握建筑施工图的基本要求和绘制方法。

四、考试形式及时间

考试形式为笔试。考试时间为3小时。

五、参考书目:

建筑构造部分:

#### (1) 考试内容及要求

①考试内容以《建筑构造》上、下册教材为主,辅以相关参考书目、标准图集、建筑资料集有关建筑组成及构件的内容和相关建筑节能、绿色建筑等技术内容。主要参考书目:1、《中国建筑史》,中国建筑工业出版社;2、《中国古代建筑史》,刘敦桢主编,中国建筑工业出版社;3、《华夏意匠》,李允鉌著,中国建筑工业出版社;4、《外国建筑史(十九世纪末以前)》,中国建筑工业出版社;5、《外国近现代建筑史》,中国建筑工业出版社;6、《城市规划原理》,同济大学主编,中国建筑工业出版社;7、《外国城市建筑史》,沈玉麟编,中国建筑工业出版社;8、《建筑构造》(上、下册),重庆建筑大学,李必瑜,刘建荣等,中国建筑工业出版社。9、《建筑构造》(第一册、第二册),南京工学院建筑系《建筑构造》编写小组,中国建筑工业出版社。10、《现行建筑设计规范大全》,中国建筑工业出版社编辑出版。11、《建筑设计资料集》(第二版),中国建筑工业出版社编辑出版。12、参考各地建筑设计标准图集。

356 城市规划基础

## 一、 考试的总体要求

- 1、全面掌握城市规划原理的各种基本概念、基本理论、城市规划设计的原则和方法以及规划设计的有关技术经济等问题;
- 2、了解中国古代、近代城市建设发展的基本特征,了解国外城市建设发展的基本特征,了解国外经典城市发展思想、理论的基本内容;
- 3、了解当代城市规划理论和实践的发展变化,对当前热点城市规划理论、思想有一定的认识和理解:
- 4、具有良好的综合分析与思辨能力,以及通过文字或结合绘图的综合表达能力;
- 5、运用基本的城市规划原理知识,综合解决新问题,具备一定的触类旁通、关联理解能力。
- 二、 考试的内容、试卷题型及比例:
- (1) 考试内容及要求
- ①能准确地解释与城市规划相关的各种名词和基本概念;
- ②能正确、清楚、简明扼要地表述城市规划设计的原则和方法以及规划设计的有关技术经济问题;
- ③ 能有理论、有实例、有分析、有观点的通过笔述和绘图,正确表述关于城市规划学科的各种理论、观点、思潮以及城市规划建设方面的相关问题。
- (2) 试卷题型及比例
- 一般分为概念(名词解释)题、简答题和叙述题等几个部分。概念题约占 20%, 简答题约占 30%, 叙述题约占 50%。
- 三、 考试形式及时间

考试形式为笔试。考试时间为3小时。

#### 四、参考书目:

1、《城市规划原理》,同济大学主编,中国建筑工业出版社; 2、《中国城市建筑史》,董鉴泓 主编,中国建筑工业出版社; 3、《外国城市建筑史》,沈玉麟编,中国建筑工业出版社; 4、 《城市规划》、《城市规划学刊(汇刊)》、《外国城市规划》等杂志。 357 英语翻译基础

## 一、考试总体要求

《英语翻译基础》重点考察考生的英汉互译专业技能和潜质,内容包括:词汇翻译(中英文术语或专有名词)和英汉互译(中英文语篇互译),总分150分。

- 二、考试内容及比例
- 1、词语翻译:术语、缩略语或专有名词等英汉互译,30分。
- 2、英汉互译: 段落或文章英汉互译, 英译汉约 250-350 个单词, 汉译英约 150-250 个汉字, 120 分。
- 三、试卷题型

词语、段落或文章翻译。

四、考试形式及时间

采用闭卷形式考试,考试时间为180分钟。

431 金融学综合

## 一、考试总体要求

本大纲适用于金融专业硕士学位研究生的入学考试。本项考试课程要求学生掌握金融学的基本概念、基本观点、基本原理和基本分析工具;掌握财务管理学的基本概念、基本理论、基本内容和基本分析方法。

### 二、考试的内容及比例

金融专业硕士学位研究生《金融学综合》考试由金融学、财务管理构成。其中金融学占 60%、财务管理占 40%。考试满分为 150 分。

#### 金融学部分:

- 1、金融市场与金融机构
- 2、货币的时间价值与现金流贴现分析
- 3、债券定价分析
- 4、股票定价分析
- 5、风险管理的基本原理
- 6、资产组合的基本原理
- 7、金融衍生工具

#### 财务管理部分:

- 1、财务管理基本原理
- 2、价值衡量
- 3、财务分析
- 4、企业融资决策
- 5、资本成本与资本结构
- 6、长期投资决策
- 7、短期财务决策
- 8、利润与股利分配政策
- 三、试卷题型及比例
- 1、选择题和概念题,约占20%
- 2、简答题,约占25%
- 3、论述分析题,约占总分的25%
- 4、计算分析题,约占30%
- 四、考试形式

考试形式为笔试, 考试时间为三小时。

#### 五、主要参考教材

- 1、兹维 博迪和罗伯特 C 默顿,金融学 (第二版),中国人民大学出版社,2009
- 2、荆新、王化成、刘俊彦, 财务管理学, 中国人民大学出版社, 2009

六、专业课无辅导

## 一、考试总体要求

本大纲适用于资产评估硕士专业学位研究生的入学考试。本项考试课程要求学生掌握经济学的基本概念、基本观点、基本原理和基本分析工具;掌握资产评估的基本概念、基本原理和基本方法以及各类资产评估的基本内容;掌握财务管理学的基本概念、基本理论、基本内容和基本分析方法。

二、考试的内容及比例(150分)

资产评估硕士专业学位研究生《资产评估专业基础》考试由经济学、资产评估学、财务管理构成。其中经济学占 40%、资产评估学占 30%、财务管理占 30%。

#### 经济学部分:

- 1、需求、供给与市场均衡
- 2、消费者行为理论
- 3、生产理论
- 4、成本理论
- 5、宏观经济学基础: 国民收入核算、GDP 的概念与核算范围、GDP 的计算方法、GDP 与GNP 的关系等。

资产评估学部分:

- 1、资产评估的基本理论
- 2、资产评估的基本方法
- 3、机器设备评估
- 4、房地产评估
- 5、无形资产评估
- 6、流动资产评估
- 7、长期投资及其他资产评估
- 8、企业价值评估
- 9、资产评估报告
- 10、资产评估准则

财务管理部分:

- 1、财务管理基本原理
- 2、价值衡量
- 3、财务分析
- 4、企业融资决策
- 5、资本成本与资本结构
- 6、长期投资决策
- 7、短期财务决策
- 8、利润与股利分配政策等
- 三、试卷题型及比例
- 1、选择题和概念题,约占20%
- 2、简答题,约占25%
- 3、论述分析题,约占总分的25%
- 4、计算分析题,约占30%

四、考试形式

考试形式为笔试,考试时间为三小时。

# 五、主要参考教材

- 1、高鸿业主编,西方经济学,中国人民大学出版社,2007
- 2、中国资产评估协会编,资产评估,经济科学出版社,2011
- 3、荆新、王化成、刘俊彦,财务管理学,中国人民大学出版社,2009 六、专业课无辅导

# 汉语国际教育基础考试大纲

# 一、考试的总体要求

汉语国际教育基础考试是汉语国际教育硕士生入学考试科目之一,是由汉语国际教育硕士专业学位教育指导委员会统一制定考试大纲,教育部授权的各汉语国际教育硕士培养院校自行命题的选拔性考试。本考试大纲的制定力求反映汉语国际教育硕士专业学位的特点,科学、公平、准确、规范地测评考生的相关知识基础、基本素质和综合能力。汉语国际教育基础考试的目的是测试考生相关的中外文化、教育学、心理学、跨文化交际的基础知识、基本素养及书面语表达能力。

# 二、考试的内容及比例

- 1、中外文化及跨文化交际基础知识占 30 分
- 2、教育学、心理学及语言教学知识占 40 分
- 3、材料分析写作占80分

# 三、试卷题型及比例

试卷题型包括三种:名词解释、简答和写作,其比例分别为:30分、80分、40分。

# 四、考试形式

(一)试卷总分及考试时间

试卷满分为 150 分。其中中外文化及跨文化交际基础知识 80 分,教育、心理及语言教学基础知识 30 分,材料分析写作 40 分。

考试时间为 180 分钟。

## (二)答题方式

答题方式为闭卷、笔试。

试卷由试题和答题纸组成。答案必须写在答题纸相应的位置上。

# 五、参考书目

- 1、《跨文化交际学概论》(胡文仲主编,外语教学与研究出版社)
- 2、《对外汉语教学概论》(赵金铭,商务印书馆)

- 3、《中国文化概论》(张岱年、方克立,北师大出版社)
- 4、《西方文化概论》(曹顺庆主编,中国人民大学出版社)

| 446 | 城市规划设计 |
|-----|--------|
|-----|--------|

- 一、考试的总体要求
- 1、在设计方案中灵活运用城市规划原理及相关知识;
- 2、能全面掌握各规划设计阶段的要求、深度、表现方法;
- 3、掌握国家相关技术经济指标的有关规定和技术经济指标的计算方法;
- 4、了解现行城市规划相关法规知识并能够在方案中综合运用。
- 二、考试内容、试卷题型及比例:

城市(镇)总体规划、详细规划和城市设计等各种类型、每年考其中的一种类型。

三、考试形式及时间

考试形式为笔试。考试时间:连续3小时。

## 一、 考试总体要求

《汉语写作与百科知识》重点考察考生的现代汉语写作水平和百科知识,内容包括:百科知识、应用文写作和命题作文,总分150分。

- 二、 考试内容及比例
- 1、百科知识: 50分。
- 2、应用文写作:约 500 个汉字的应用文体文章一篇,40 分。
- 3、命题作文:约 800 个汉字的现代汉语文章一篇,60 分。
- 三、试卷题型

题型包括选择题、名词解释、作文。

四、考试形式及时间

采用闭卷形式考试,考试时间为180分钟。

# 一、考试总体要求:

能运用景观规划设计的基本理论知识,独立完成各种类型的景观规划设计方案。

## 二、考试内容:

城市典型景观环境(包括:广场、公园、庭院、居住区、校园、滨水区、建筑外环境等中小尺度的景观环境)规划设计。

# 三、考试题型:

方案快题设计

四、考试形式及时间:

考试形式均为笔试,考试时间为6小时

## 一、考试的总体要求

本课程设计艺术学专业考生应根据试卷要求进行设计。

## 二、考试的内容及比例:

设计艺术学考试的内容为环境艺术设计(室内设计与景观设计)及相关装饰设计,包括公共建筑、居住建筑等室内空间设计,城市广场、公园、庭园、街道等环境空间景观设计,以及雕塑、壁画的小品等。

## 三、考试形式及时间

考试形式均为快速表现图形式。考试时间:连续6小时

## 一、考试的总体要求

- 1、考生应运用建筑设计原理的基本理论知识,独立完成一项包括外部环境规划在内的建筑设计方案。
- 2、方案应正确安排建筑与环境的关系作出环境设计,并依据设计任务的要求达到合理的功能布置和流线组织。
- 3、设计方案应具有较好的空间组合,并能体现建筑的性格特征,达到形式与功能的统一。
- 4、设计方案应具有工程技术方面的可能性,主体结构布置合理,层高确定得当,构造合理。
- 5、设计造型较好,图面表达准确,具有较熟练的表现技巧,符合制图规范要求。
- 6、图面一律用白纸黑绘。

## 二、考试的内容及比例

考试范围为中小型民用建筑设计或旧建筑的扩建、改造设计及其环境设计,规模根据题目难易程度决定。

## 三、试卷题型及比例

- 1、题型以一般功能要求为主,便于充分发挥考生的设计技能。如属特殊功能要求,另 附参考资料。
- 2、试题结构包含:环境设计(总平面及周围环境)、单体建筑设计(平、立、剖面及透视)、及表现技能等三个方面。

## 四、考试形式及时间

考试形式为笔试。

考试时间:连续6小时。

## 五、主要参考书目

- 1、《建筑空间组合论》彭一刚著,中国建筑工业出版社。
- 2、《建筑:形式、空间和秩序》【美】沸郎西斯、DK、钦著,邹德侬、方千里译。
- 3、《建筑设计资料集》(第二版)1—9集,中国建筑工业出版社。
- 4、相关建筑设计防火规范等。

602 数学分析

## 一、 考试的总体要求

主要考察学生掌握《数学分析》的基本知识,基本理论和基本技能的情况及其用分析的理论与方法分析问题和解决问题的能力。

#### 二、考试的内容及比例

极限(包括上、下极限、二重极限和累次极限)概念、性质与计算;函数的连续性和一致连续性及有界闭区域上连续函数的性质;函数的导数、微分、偏导数和全微分;微分中值定理及导数的应用(包括偏导数在几何上的应用);二元函数的极值与条件极值;不定积分、定积分的概念、性质及计算;定积分存在的条件;重积分、曲线积分、曲面积分的概念、性质与计算及各种积分之间的关系;各种积分在几何上与物理上的应用;数项级数敛散性判别法(包括条件收敛和绝对收敛);函数列、函数项级数的一致收敛性及其判别法;一致收敛的函数项级数的性质;求幂级数的收敛域及其和函数;函数的幂级数与富里埃级数展开;含参变量积分的概念、性质;含参变量广义积分一致收敛的概念及其判别法;一致收敛的含参变量广义积分的性质及其应用。

极限论占 15%, 单变量微积分学占 40%, 级数论占 25%, 多变量微积分学占 20%。

#### 三、 考试的题型及比例

选择题、填空题、简答题和计算题约占70%,证明题约占30%。

四、考试形式及时间

考试形式均为笔试。考试时间为三小时。(满分150分)

#### 一、 考试的总体要求

生物化学研究生入学考试是为招收与生物化学有关专业硕士研究生而实施的具有选拔功能的水平考试。要求考生全面地掌握生物化学的基本概念、基本理论和基本实验方法;并具备运用其基本理论和具体分析方法以解决科学研究中具体问题,能综合运用所学的知识分析问题和解决问题。要求试卷书写清楚、专业术语运用准确,答题完整。

#### 二、考试的内容

#### 1.蛋白质化学:

蛋白质的化学组成,氨基酸的理化性质及化学反应

蛋白质分子的结构(一级、二级、高级结构的概念及形式),掌握蛋白质一级结构的测定的一般步骤和方法,了解氨基酸、肽的分类,理解氨基酸的通式与结构

蛋白质的理化性质及分离纯化和纯度鉴定的方法,掌握氨基酸与蛋白质的物理性质和化学性质,蛋白质的变性作用,蛋白质结构与功能的关系

理解蛋白质二级和三级结构的类型及特点,四级结构的概念及亚基.掌握肽键的特点,掌握蛋白质的变性作用,掌握蛋白质结构与功能的关系

#### 2.核酸化学:

核酸的基本化学组成及分类,全面了解核酸的组成、结构、结构单位以及掌握核酸的性质核苷酸的结构,全面了解核苷酸组成、结构、结构单位以及掌握核苷酸的性质

DNA 和 RNA 一级结构的概念和二级结构特点; DNA 的三级结构

RNA 的分类及各类 RNA 的生物学功能,掌握 DNA 的二级结构模型和核酸杂交技术 核酸的主要理化特性

核酸的研究方法

#### 3.糖类结构与功能

糖的主要分类及其各自的代表,掌握糖的概念及其分类

糖聚合物及其代表和它们的生物学功能,掌握糖类的元素组成、化学本质及生物学功用,理 解旋光异构

糖链和糖蛋白的生物活性,掌握糖的鉴定原理

掌握单糖、二糖、寡糖和多糖的结构和性质

## 4.脂质与生物膜

生物体内脂质的分类,其代表脂及各自特点

甘油脂、磷脂以及脂肪酸特性。油脂和甘油磷脂的结构与性质了,解脂质的类别、功能,掌握甘油脂、磷脂的通式以及脂肪酸的特性

生物膜的化学组成和结构,"流体镶嵌模型"的要点,熟悉重要脂肪酸、重要磷脂的结构掌握油脂和甘油磷脂的结构与性质

#### 5.酶学

酶的作用特点,了解酶的概念

酶的作用机理.掌握酶活性调节的因素、酶的作用机制

影响酶促反应的因素(米氏方程的推导),掌握酶活力概念、米氏方程以及酶活力的测定方法

酶的提纯与活力鉴定的基本方法,了解酶的分离提纯基本方法

熟悉酶的国际分类和命名,熟悉酶的国际分类(第一、二级分类)

了解抗体酶、核酶和固定化酶的基本概念和应用,了解特殊酶,如溶菌酶、丝氨酸蛋白酶催

化反应机制

了解抗体酶、核酶的基本概念 掌握固定化酶的方法和应用

6.维生素和辅酶

维生素的分类及性质,了解水溶性维生素的结构特点、生理功能和缺乏病各种维生素的活性形式、生理功能,了解脂溶性维生素的结构特点和功能7.激素

激素的分类,了解激素的类型、特点

激素的化学本质;激素的合成与分泌,理解激素的化学本质和作用机制

常见激素的结构和功能(甲状腺素、肾上腺素、胰岛素、胰高血糖素),了解常见激素的结构和功能

激素作用机理

理解第二信使学说

8.新陈代谢和生物能学

新陈代谢的概念、类型及其特点, 理解新陈代谢的概念、类型及其特点

ATP 与高能磷酸化合物,了解高能磷酸化合物的概念和种类

ATP 的生物学功能, 理解 ATP 的生物学功能

电子传递过程与 ATP 的生成, 掌握呼吸链的组分、呼吸链中传递体的排列顺序

呼吸链的组分、呼吸链中传递体的排列顺序

掌握氧化磷酸化偶联机制

9.糖的分解代谢和合成代谢

糖的代谢途径,包括物质代谢、能量代谢和有关的酶,全面了解糖的各种代谢途径,包括物质代谢、能量代谢和酶的作用,理解糖的无氧分解、有氧氧化的概念、部位和过程糖的无氧分解、有氧氧化的概念、部位和过程

糖异生作用的概念、场所、原料及主要途径,了解糖原合成作用的概念、反应步骤及限速酶糖酵解、丙酮酸的氧化脱羧和三羧酸循环的反应过程及催化反应的关键酶, 掌握糖酵解、丙酮酸的氧化脱羧和三羧酸循环的途径及其限速酶调控位点,掌握磷酸戊糖途径及其限速酶调控位点

光合作用的概况,了解光合作用的总过程

光呼吸和 C4 途径,理解光反应过程和暗反应过程

了解单糖、蔗糖和淀粉的形成过程

10.脂类的代谢与合成

脂肪动员的概念、限速酶;甘油代谢,全面了解甘油代谢:甘油的来源和去路,甘油的激活,理解脂肪酸的生物合成途径

脂肪酸的 β-氧化过程及其能量的计算,

酮体的生成和利用

胆固醇合成的部位、原料及胆固醇的转化及排泄,掌握脂肪的合成代谢

血脂及血浆脂蛋白

了解脂类的消化、吸收及血浆脂蛋白

理解脂肪动员的概念、各级脂肪酶的作用、限速酶

了解磷脂和胆固醇的代谢

11.核酸的代谢

嘌呤、嘧啶核苷酸的分解代谢与合成代谢的途径,了解外源核酸的消化和吸收,理解碱基的 分解代谢 外源核酸的消化和吸收,理解核苷酸的分解和合成途径,掌握核苷酸的从头合成途径 碱基的分解

核苷酸的生物合成

常见辅酶核苷酸的结构和作用,了解常见辅酶核苷酸的结构和作用

12. DNA, RNA 和遗传密码

DNA 复制的一般规律,掌握 DNA 复制的特点,掌握真核生物与原核生物 DNA 复制的异同点

参与 DNA 复制的酶类与蛋白质因子的种类和作用(重点是原核生物的 DNA 聚合酶)

DNA 复制的基本过程,掌握参与 DNA 复制的酶与蛋白质因子的性质和种类

真核生物与原核生物 DNA 复制的比较

转录的基本概念;参与转录的酶及有关因子,掌握转录的一般规律

原核生物的转录过程

RNA 转录后加工的意义

mRNA、tRNA、rRNA 的转录后加工过程

逆转录的过程

逆转录病毒的生活周期

RNA 的复制: 单链 RNA 病毒的 RNA 复制,双链 RNA 病毒的 RNA 复制

RNA 传递加工遗传信息,全面了解 RNA 转录与复制的机制,掌握 RNA 聚合酶的作用机理理解 DNA 的复制和 DNA 损伤的修复基本过程

掌握启动子的作用机理

了解真核生物的转录过程

理解 RNA 转录后加工过程及其意义

13.蛋白质的合成和转运

mRNA 在蛋白质生物合成中的作用、原理和密码子的概念、特点,全面了解蛋白质生物合成的分子基础

tRNA、核糖体在蛋白质生物合成中的作用和原理

参与蛋白质生物合成的主要分子的种类和功能

蛋白质生物合成的过程,理解真核生物与原核生物蛋白质合成的区别

掌握翻译的步骤,翻译后的加工过程

真核生物与原核生物蛋白质合成的区别

理解蛋白质合成抑制因子的作用机理

14.细胞代谢和基因表达调控

细胞代谢的调节网络,理解代谢途径的交叉形成网络和代谢的基本要略

酶活性的调节,理解酶促反应的前馈和反馈、酶活性的特异激活剂和抑制剂

掌握细胞膜结构对代谢的调节和控制作用

细胞信号传递系统, 了解细胞信号传递和细胞增殖调节机理

原核生物和真核生物基因表达调控的区别

真核生物基因转录前水平的调节

真核生物基因转录活性的调节

操纵子学说(原核生物基因转录起始的调节)

翻译水平上的基因表达调控

理解转录水平上的基因表达调控和翻译水平上的基因表达调控

15 基因工程和蛋白质工程

基因工程的简介

DNA 克隆的基本原理,掌握基因工程操作的一般步骤 ,掌握各种水平上的基因表达调控 基因的分离与 DNA 的合成测序,了解人类基因组计划及核酸顺序分析,掌握 RNA 和 DNA 的测序方法及其过程

克隆基因的表达的基本概念

基因来源、人类基因组计划及核酸顺序分析

RNA 和 DNA 的测序方法及其过程

蛋白质工程

了解蛋白质工程的进展、系统生物学的现状以及对当今科学领域的意义

- 三、 试卷题型及比例
- 1、选择题、填空题、判断题: 30%
- 2、名词解释、简答题、论述题: 60%
- 3、实验方案设计及计算题: 10%

四、考试形式及时间 硕士研究生入学生物化学考试为笔试,考试时间为 3 小时。试卷 务必书写清楚、符号和西文字母运用得当。不得在试题上答卷。

715 哲学基础

## 一、考试的总体要求

要求考生比较系统地掌握马克思主义哲学基础知识,以及现代自然科学的发展概况及其相关的哲学基础知识。

- 二、考试的内容及比例
- 1、马克思主义哲学基础知识,100分
- (1)世界的物质统一性(世界的物质性,物质世界的存在方式,意识对物质的依赖性和相对独立性,世界物质统一性的证明)
- (2) 辩证发展观(a、物质世界的联系和发展: 世界的普遍联系, 世界的运动发展, 世界联系和发展的规律性; b、世界联系和发展的基本环节:整体与部分,个别与一般, 特殊与普遍, 相对与绝对, 偶然与必然, 形式与内容, 现象与本质, 可能与现实; c、世界联系和发展的基本规律: 量变质变规律, 对立统一规律, 否定之否定规律)
- (3)认识论(a、认识的本质和特征:认识的本质,实践及其在认识中的基础地位,认识的系统结构和基本属性,认识的历史演化和现代发展趋势;b、认识的辩证过程:由感性认识到理性认识的能动的飞跃,由理性认识到实践的能动的飞跃,认识辩证运动的全过程;c、思维方法,真理和价值。)
  - 2、现代自然科学与哲学基础知识,50分(以下五部分内容任选一部分)
- (1) 数学基础知识(数学分支领域介绍,20世纪数学发展的特点,应用类数学分支介绍,数学问题介绍。)
- (2)物理学基础知识(19世纪末、20世纪初物理学革命,相对论的建立及其时空观上的革命,量子力学的发展及其全新的物理概念,物质结构基本单元的理论及其应用)
- (3) 化学基础知识(现代化学理论,现代实验和分析化学方法,现代化学的发展特点和趋势)
- (4) 生命科学基础知识(a、现代生命科学理论与应用——细胞与细胞克隆、基因与基因工程、人类遗传与优生、致病微生物与人体免疫、生物多样性与保护,b、现代生命科学的发展趋势及特点)
- (5) 哲学基础知识(何谓哲学,认识论,形而上学与心灵哲学,科学哲学)
  - 三、试卷类型及比例

名词解释: 约占 40%
简答题(或简单计算): 约占 40%
论述题(或计算题): 约占 20%

四、考试形式及时间

考试形式: 笔试。考试时间: 3小时。

- 五、主要参考教材
- 1. 《马克思主义哲学原理》(合订本), 肖前,中国人民大学出版社,1998年版;
- 2. 《自然科学概论》, 娄兆文, 科学出版社, 2012 年版;
- 3. 《哲学概论》, 保罗沃尔夫, 广西师范大学出版社, 2005年版。

## 一、考试总体要求

本考试大纲适用于天津大学生命科学学院相关专业的硕士研究生入学考试。主要内容包括生命体的物质组成以及分子(尤其是生物大分子)结构、性质与功能,物质代谢的规律、能量转化及其调控机制等。要求考生全面系统地理解和掌握生物化学的基本概念、基本理论和基本实验方法,了解生物化学学科的最新研究进展,具有运用生物化学学科相关基本理论和具体分析方法来分析并解决科学研究中的具体问题的初步能力。要求试卷书写清楚、专业术语运用准确,答题完整。

#### 二、考试内容

## 1.蛋白质化学

蛋白质的化学组成;20种氨基酸的通式、结构、理化性质及化学反应;蛋白质分子的结构(一级、二级、高级结构的概念及形式;蛋白质二级和三级结构的类型及特点,四级结构的概念及亚基;肽键的特点);蛋白质一级结构测定;蛋白质三维结构测定方法、特点及研究进展;蛋白质的理化性质及分离、纯化、鉴定方法;蛋白质的变性作用;蛋白质结构与功能的关系

#### 2.核酸化学

核酸的基本化学组成及分类;核酸及核苷酸的结构、结构单位及理化特性; DNA 和 RNA 一级结构、二级结构和 DNA 的三级结构; RNA 的分类及各类 RNA 的生物学功能;核酸的研究方法

#### 3.糖类结构与功能

糖的概念、分类及其各自的代表;糖类的元素组成、化学本质及生物学功能;单糖、二糖、寡糖和多糖的结构和性质;糖聚合物及它们的生物学功能;糖链和糖蛋白的生物活性;糖的鉴定原理和方法

#### 4.脂质与生物膜

生物体内脂质的类别及功能;甘油脂、磷脂以及脂肪酸特性;生物膜的化学组成和结构及脂类分子在生物膜上的分布特征,"流体镶嵌模型"的要点

#### 5. 酶学

酶的概念、国际分类和命名;酶的作用特点、机制及酶活性调节的因素;影响酶促反应的因素;酶的分离纯化与活力鉴定的基本原理和方法;了解抗体酶、核酶和固定化酶的基本概念和应用

#### 6. 维生素和辅酶

维生素的分类及性质;水溶性维生素的结构特点、生理功能和缺乏症;脂溶性维生素的 结构特点和功能

#### 7. 激素

激素的分类; 激素的化学本质和作用机制; 激素的合成与分泌; 常见激素的结构和功能; 激素作用机理; 理解第二信使学说

#### 8. 新陈代谢和生物能学

新陈代谢的概念、类型及其特点;ATP 与高能磷酸化合物;ATP 的生物学功能;电子传递过程与ATP 的生成;呼吸链的组分、呼吸链中传递体的排列顺序;氧化磷酸化偶联机制

## 9. 糖的分解代谢和合成代谢

糖的代谢途径和有关的酶;糖的无氧分解、有氧氧化的概念、发生部位和过程;糖异生

作用的概念、场所、原料及主要途径;糖原合成作用;三羧酸循环的反应过程及催化反应的关键酶;磷酸戊糖途径及其限速酶调控位点;光合作用的概况,了解光合作用的总过程;光呼吸和 C4 途径,理解光反应过程和暗反应过程;了解单糖、蔗糖和淀粉的形成过程

#### 10. 脂类的代谢与合成

脂肪动员的概念、限速酶;甘油代谢;脂肪酸 β-氧化过程及其能量的计算;酮体的生成和利用;胆固醇合成的部位、原料及胆固醇的转化及排泄;理解脂肪酸的生物合成途径;了解磷脂和胆固醇的代谢;血脂及血浆脂蛋白

#### 11. 核酸的代谢

嘌呤、嘧啶核苷酸的分解代谢与合成代谢的途径;外源核酸的消化和吸收;碱基的分解;核苷酸的分解和合成途径;核苷酸从头合成途径;辅酶核苷酸的结构和作用

#### 12. DNA, RNA 和遗传密码

DNA 复制的一般规律;参与 DNA 复制的酶类与蛋白质因子的种类和作用(重点是原核生物的 DNA 聚合酶); DNA 复制的基本过程;真核生物与原核生物 DNA 复制的比较; DNA 的损伤与修复的机理;转录基本概念;参与转录的酶及有关因子;原核生物的转录过程;了解真核生物的转录过程;启动子的作用机理;RNA 转录后加工的意义;mRNA、tRNA、rRNA 和非编码 RNA 的转录后加工;逆转录的过程;逆转录病毒的生活周期和逆转录病毒载体的应用;RNA 的复制:单链 RNA 病毒的 RNA 复制,双链 RNA 病毒的 RNA 复制;RNA 传递加工遗传信息,了解 RNA 转录与复制的机制,掌握 RNA 聚合酶的作用机理;染色体与 DNA; DNA 的转座;转座子的分类和结构特征;转座作用的机制;转座作用的遗传学效应

## 13. 蛋白质的合成和转运

mRNA 在蛋白质生物合成中的作用、密码子的概念与特点; tRNA、核糖体在蛋白质生物合成中的作用和原理; 蛋白质生物合成的过程; 参与蛋白质生物合成的主要分子的种类和功能; 翻译后的加工过程; 真核生物与原核生物蛋白质合成的区别; 蛋白质合成抑制剂及其分子机理

## 14. 细胞代谢和基因表达调控

细胞代谢的调节网络,理解代谢途径的交叉形成网络和代谢的基本要略;酶活性的调节,理解酶促反应的前馈和反馈、酶活性的特异激活剂和抑制剂;细胞膜结构对代谢的调控作用;细胞信号传递系统,了解细胞信号传递和细胞增殖调节机理;原核生物和真核生物基因表达调控的区别;真核生物基因转录前水平的调节;真核生物基因转录活性的调节和转录因子的功能;操纵子学说及模型,几种重要操纵子如乳糖操纵子、色氨酸操纵子、组氨酸操纵子和recA操纵子;原核生物基因转录起始的调节;翻译水平上的基因表达调控;理解转录水平上的基因表达调控和翻译水平上的基因表达调控

## 15. 基因工程和蛋白质工程

基因工程的简介; DNA 克隆的基本原理; 基因的分离与 DNA 合成和测序; 了解人类 基因组计划及核酸顺序分析; 掌握 RNA 和 DNA 的测序方法及其过程; 克隆基因表达的基 本概念; 基因功能研究的常用方法和原理; 了解蛋白质工程的进展

## 16. 高等动物的基因表达(了解内容)

表观遗传学的概念和研究范畴;基因表达与 DNA 甲基化; DNA 甲基化对基因转录的抑制机理;基因表达与组蛋白修饰;蛋白质磷酸化与信号传导;分子伴侣的功能;原癌基因及其调控

- 三、试卷题型及比例
- 1.选择题、填空题、判断题: 30%
- 2.名词解释、简答题、论述题: 50%

## 3.实验方案设计及计算题: 20%

# 四、考试形式及时间

考试形式为笔试,考试时间为 3 小时。试卷务必书写清楚、符号和西文字母运用得当。 不得在试题上答卷。

# 五、参考书目

- [1]王镜岩等.生物化学(第3版,上册、下册).高等教育出版社,2002.
- [2] Benjamin Lewin, 余龙等译.《基因 VIII》(中文版), 科学出版社, 2005.

717 普通物理

#### 1. 考试的总体要求

考核学生对普通物理课程的基本概念、基本知识掌握的程度、物理知识面的宽度以及对问题分析、处理的能力和灵活性。

- 2. 考试的内容及比例: (重点部分)
- (一) 力学: 40% (60分)
- (1). 质点与刚体运动学:运动学方程,轨道及轨道方程,速度,加速度及其分量表示。角速度,角加速度,角量与线量的关系。
- (2). 质点、质点组与刚体动力学: 牛顿运动定律,动量定理及动量守恒定律,动能定理与机械能守恒定律,角动量定理及角动量守恒定律。刚体的平动和定轴转动。
- (3). 机械振动与机械波: 简谐振动运动学及动力学特征,简谐振动的合成。平面简谐波方程,惠更斯原理,波的叠加与干涉,驻波。
- (二) 电磁学: 40% (60分)
- (1). 真空与介质中的静电场:静电场的电场强度,电场力的功,电势。场强与电势的叠加原理,电场强度与电势的关系。高斯定理,环路定理。导体的静电平衡问题,电介质的极化现象,各向同性介质中的D与E的关系与区别。电容,静电场能量。
- (2). 稳恒电流的磁场:磁感应强度矢量,磁场的叠加原理,毕奥-萨伐尔定律及应用。磁场的高斯定理,安培环路定理及应用。磁场对载流导体的作用,安培定律,载流线圈的磁场及在外磁场中所受的力矩。运动电荷的磁场,洛仑兹力。
- (3). 电磁感应: 法拉第电磁感应定律, 楞次定律, 感应电动势, 自感, 互感。自感储能, 磁场能量。
- (4). 麦克斯韦电磁场理论与电磁波: 位移电流,麦氏方程组,电磁波的产生与传播,电磁波的基本性质,电磁波的能量、能流和能流密度。
- (三) 光学 20% (30分)
- (1). 光的干涉:相干光,光程,光程差与位相差,杨氏双缝干涉,薄膜等厚干涉,麦克耳逊干涉仪的工作原理及应用。
- (2). 光的衍射: 惠更斯-菲涅尔原理,单缝的夫子良和费衍射,光珊衍射。
- (3). 光的偏振: 自然光与线偏振光,布儒斯特定律,马吕斯定律,双折射现象,起偏器与 检偏器,线偏振光的获得与检验。
- (4). 光的量子性: 光电效应及康普顿效应的实验规律,爱因斯坦的光子理论,光的波粒二象性。
- 3. 试卷题型及比例

题型以计算题为主,概念题、选择题、填空题和证明题为辅,综合类题占10%左右。

4. 考试形式及时间

考试形式均为笔试。考试时间为三小时(满分 150)。

#### 5. 参考书目

张三慧,《大学物理学》,清华大学出版社

718 有机化学

## 一、 考试的总体要求

"有机化学"入学考试是为招收化学类硕士生而实施的选拔性考试。其指导思想是有利于选拔具有扎实的有机基础理论知识和具备一定实验技能的高素质人才。要求考生能够系统地掌握有机化学的基本知识和有机化学实验的基本操作以及具备运用所学的知识分析问题和解决问题的能力。

- 二、考试的内容及比例
- 1. 有机化合物的命名、顺反及对映异构体命名、个别重要化合物的俗名和英文缩写 8~10%
- 2. 有机化合物的结构、共振杂化体及芳香性,同分异构与构象。4-6%
- 3. 诱导效应、共轭效应、超共轭效应、空间效应、小环张力效应、邻基效应、氢键的概念及上述效应对化合物物理与化学性质的影响。4-6%
- 4. 主要官能团(烯键、炔键、卤素、硝基、氨基、羟基、醚键、醛基、酮羰基、羧基、酯基、卤甲酰基、氨甲酰基、氰基、磺酸基等)的化学性质及他们之间相互转化的规律。
- 5. 烷烃、脂环烃、烯烃、炔烃、卤代烃、醇、酚、醚、醛、酮、不饱和醛酮、羧酸、羧酸及其衍生物、羟基酸、羟基酸、丙二酸酯、β-丙酮酸酯、氨基酸、硝基化合物、胺、腈、偶氮化合物、磺酸、简单杂环化合物、单糖、元素(Mg、Zn、Cu、Li)有机化合物等的制备、分离、鉴定、物理性质、化学性质及在合成上的应用。30-35%
- 6. 常见有机化合物的波谱(红外)、核磁)
- 7. 饱和碳原子上的自由基取代,亲核取代,芳环上的亲电与亲核取代,碳碳重键的亲电、自由基及亲核加成,消除反应,聚合反应,氧化反应(烷烃、烯烃、炔烃、醇、醛、芳烃侧链的氧化脂环烃、烯炔臭氧化及 Cannizzaro 反应),还原反应(不饱和烃、芳烃、醛、酮、羧酸、羧酸衍生物、硝基化合物、腈的氢化还原及选择性还原反应),缩合反应(羟醛缩合、Claisen 缩合、Claisen-Schmidt 缩合、Perkin 缩合),降级反应(Hofmann 降解,脱羧),重氮化反应,偶合反应,重排反应(Wagner-Meerwein 重排、烯丙位重排、频那醇重排、Beckmann 重排、Hofmann 重排)的历程及在有机合成中的应用。20-25%
- 8. 碳正离子、碳负离子、自由基、苯炔的生成与稳定性及其有关反应的规律。能够从中间体稳定性来判断产物结构。6-8%
- 9. 有机化学实验中的基本操作及基本合成实验操作及产物的后处理。8-12%
- 三、考试的题型及比例
- 1. 化合物的命名或写出结构式 6-10%
- 2. 完成反应(由反应物、条件和产物之 H 写出条件、产物或反应物之一) 25-35%
- 3. 选择填空(涉及中间体的稳定性、芳香性、芳环 L 亲电取代反应定位规则、有机反应中的电子效应与空间效应、构象与构象分析、官能团的鉴定等)8-12%
- 4. 反应历程: 典型反应的历程 8-12%
- 5. 分离与鉴别 6-8%
- 6. 推断化合物的结构(给定化学反应、化学性质、红外、核磁等条件)8-12%
- 7. 合成题: 15-20%
- 8. 实验题(有机化学实验的基本操作的作用及应用条件,分析实验中的问题及解决问题的方法)8-12%
- 四、考试形式及时间
- "有机化学"考试形式为笔试。考试时间为3小时。

719 西方哲学史

## 一、考试的总体要求

要求考生比较系统地掌握西方哲学的基本内容、西方哲学发展的基本线索,并对西方哲学的特点、主要哲学家的思想及其价值有较深入的了解。

## 二、考试的内容及比例

- 1、希腊哲学约占35%;
- 2、经院哲学约占10%;
- 3、近代哲学约占 25%;
- 4、德国古典哲学约占30%。

## 三、试卷类型及比例

- 1、概念、命题解释约占 20%;
- 2、简答、简述题约占40%;
- 3、分析、论述题约占40%。

#### 四、考试形式及时间

考试形式:笔试;考试时间:三小时。

# 五、主要参考教材

赵敦华:《西方哲学简史》(修订版),北京大学出版社,2012年。

720 法学基础综合

## 1. 考试的总体要求

要求考生比较系统地掌握法理学、民法学的基础知识、基本原理并能够综合运用。能用所学知识分析、解决相关的法律问题。

2. 考试的内容及比例

法理学(50%)、民法学(50%)

## 3. 试卷类型及比例

名词解释: 约占 10%--20% 简答题: 约占 40%--50%

论述题或案例分析: 约占 30%--40%

4. 考试形式及时间

考试形式:笔试。考试时间:3小时。

## 一. 考试的总体要求

本门课程主要考查考生对《毛泽东思想和中国特色社会主义理论体系概论》中,中国共产党 把马克思主义基本原理同中国具体实际相结合,使马克思主义在中国实现民族化、具体化的 历史过程。在这个过程中产生了哪些重大的理论成果?如何认识毛泽东思想、邓小平理论和 "三个代表"重要思想各自形成的时代背景、实践基础、科学内涵、主要内容、历史地位和指 导意义。如何认识党的十六大以来马克思主义中国化的新成果。考查其理论联系实际的分析 能力、辨别是非的能力以及综合解决问题的能力。

- 二. 考试的内容及比例
- 1.毛泽东思想部分约占 20%
- 2.中国特色社会主义理论体系约占80%
- 三. 试卷类型及比例

简答题占 30%;辨析题占 30%;分析论述题占 40%。

四. 考试形式及时间

考试形式均为笔试。考试时间为三小时(满分 150)

722 语言文学基础

## A卷(适用于语言学及应用语言学专业)

#### 一、考试的总体要求

检查考生对语言学史和现代语言学基本理论和应用知识的掌握情况,并检测其对语言现象的分析能力。

二、考试的内容及比例

语言学史占 20%, 语言学概论占 80%。

三、试卷题型

题型包括填空、选择、判断、简答、论述等。

四、考试形式及时间

采用闭卷形式考试,考试时间为180分钟。

## B卷(适用于中国现当代文学专业)

## 一、考试的总体要求

要求考生比较全面、系统地掌握中国古代文学、中国现当代文学、外国文学、文学理论等方面的基础知识,具备一定的文学鉴赏能力、综合分析文学问题的能力以及较强的文字表达能力。

二、考试的内容及比例

中国古代文学 40 分,中国现当代文学 40 分,外国文学 40 分,文学理论 30 分。

三、试卷题型

名词解释、简答题、论述题等。

四、考试形式及时间

采用闭卷形式考试,考试时间为180分钟。

723 基础英语

# 一、 考试的总体要求

本门基础课主要考察学生是否具有扎实的英语语言基础和广博的文化知识,检测学生的语言综合运用能力和思维分析能力。考试中的客观题和主观题保持合理科学的比例。

二、考试内容

## 题目类型:

1.综合填空 (语言知识、文化知识等)

180 分钟

- 2.词义辨析
- 3.阅读理解(客观、主观题型)
- 4. 简答题 (解词等)
- 5. 写作
- 三、 考试形式及时间

闭卷考试

724 教育心理学

- 一、考查目标
- 1. 要求考生理解和掌握教育心理学的基本概念、主要理论及其对教育工作的启示。
- 2. 要求考生理解和掌握认知、语言、社会性等领域发展的年龄特征、相关理论及其经典实验研究。
- 3. 要求考生能够运用教育心理学的基本概念与基本原理,认识和分析个体发展与教育教学过程中的各种现象与相关实际问题。
- 二、考试形式和试卷结构
- (一) 试卷总分及考试时间

本试卷满分为150分,考试时间为180分钟。

(二)考试方式

考试方式为闭卷、笔试。

(三) 试卷题型结构及各部分所占比例

概念解释题 6 小题,每小题 5 分,共 30 分

简答题 6 小题,每小题 10 分,共 60 分 论述题 2 小题,每小题 20 分,共 40 分

分析题 1 小题,每小题 20 分,共 20 分

- 三、考试的基本内容
- (一)教育心理学概述
- 1.教育心理学的研究对象
- 2.教育心理学的研究任务
- 3.教育心理学的历史发展
- (二) 学习与心理发展
- 1.学习的含义与作用
- 2.学习的分类
- 3.学习与心理发展的关系
- 4.学习风格与教育
- (三) 学习的主要理论
- 1.学习的联结理论
- 2.学习的认知理论
- 3.学习的建构理论
- 4.学习的人本理论
- (四) 学习动机
- 1.学习动机的实质及其作用
- 2.学习动机的主要理论
- 3.学习动机的培养与激发
- (五) 学习迁移
- 1.学习迁移的含义与作用
- 2.学习迁移的主要理论
- 3.学习迁移的条件与促进
- (六) 技能的形成
- 1.心智技能的形成过程

- 2.操作技能的主要类型
- (七) 学习策略及其教学
- 1.认知策略及其教学
- 2.元认知策略及其教学
- (八)问题解决能力与创造性的培养
- 1.能力的基本理论
- 2.问题解决能力的培养
- 3.创造性的基本结构
- (九)社会规范学习与品德发展
- 1.社会规范学习的过程
- 2.品德形成过程和培养
- 3.品德不良的矫正
- (十) 教师的心理

## 考试参考书

- 1.《学与教的心理学》,皮连生,华东师范大学出版社,2002年版
- 2.《当代教育心理学》,陈琦、刘儒德,北京师范大学出版社,2007年版

#### 一、考试的总体要求:

考试内容包括《建筑历史》(含中、外建筑史)和《建筑构造》两个部分。考试出题以主要参考书涉及的内容为主,不出偏题怪题,但需要考生在参考书范围内能够触类旁通,关联理解,按研究生考试要求体现学习中自我提高的能力。

- 二、考试的内容及比例
- 1. 中国建筑史和外国建筑史部分
- (1) 考试内容及要求

中国建筑史和外国建筑史两大部分一般都含有简答或名词解释、绘简图、叙述和评析等内容。在许多情况下绘图和述评可能是综合要求的,需要学生认真审题。

#### (2) 试卷题型

#### ①中国建筑史:

简答或名词解释与绘图主要内容包括著名建筑和建筑技术、重要建筑史实;典型建筑平面、立面、剖面(结构)、屋顶和建筑类型形象及著名建筑作品形象。阅读理解与思考述评题主要内容为中国古代建筑,亦可包括近现代建筑同古代传统的关联。要求考生一方面了解中国建筑发展中形成的各种法式规则及其社会文化意义,了解中国建筑的材料构造技术对造型的影响;另一方面了解中国建筑的基本类型、它们的形成过程、典型特征和现有著名实物,能从各时代作品到演变、从群体到单体、从结构到装饰对它们做出叙述与评论。

中国建筑的木结构和建筑群体在建筑史上重要地位。有关构架方式和群体(包括城市和园林)在中国建筑史的特点应得到考生的重视。

### ②外国建筑史:

外国建筑史以西方史为主,但作为基本史实考察,也可能在较少的分数内涉及古埃及等其他地区。史实考察范围为从奴隶社会至 20 世纪 70 年代,一些考题要求联系当代。

绘图题要求以草图形式比较准确地表达典型历史建筑风格或著名作品的平、立、剖面或结构与造型特征;简答题内容包括历史时间,主要建筑风格、建筑思潮及其历史文化背景与艺术特点,著名人物与观点,著名作品特征等各方面史实。思考题要求考生在掌握前两项考察知识的基础上,能流畅地联系当代建筑艺术发展,对历史上的建筑形式特点、建筑艺术观点等做出分析评价。

## 2. 建筑构造部分:

- (1)考试内容及要求:有关建筑组成及构件的内容和相关建筑节能、绿色建筑等技术内容。 ①能准确地理解和解释建筑构造相关的各种名词和基本概念。
- ②能正确、清楚地表述建筑各组成部分的功能、构成原理、构造设计原则和方法;特殊构造做法及判断常见构造设计的错误做法和改正措施。
- ③根据给定的条件(绘图或文字),按要求正确设计和绘制相应的构造详图,并按施工图深度正确表达构造做法、材料、比例、尺寸及标注。

#### (2) 试卷题型:

基本概念中包括:判断、填空、名词解释;根据文字条件作图、补图、改错图;根据文字条件或指定部位进行构造详图设计和绘制。

#### 三、试卷题型及比例

1. 中国建筑史和外国建筑史: 满分80分。

要求考生比较全面地了解建筑历史发展演变的进程,掌握不同国家和地区、不同政治、经济、思想、文化背景,以及不同技术条件下的各种建筑特点;能够分析历史上各种建筑创作思想、

总结传统经验以适应现实需要。

考生应在了解基本史实的基础上,具有良好的阅读理解、叙述、绘图与综合分析能力;既能从特定历史阶段角度,又能从发展演变角度认识建筑设计思想与作品;既能叙述与描绘具体建筑思想与作品特点,又能具备历史传统对当今建筑起到怎样影响的知识。

2. 建筑构造: 满分70分。

#### 一般要求:

掌握中小型民用建筑构造基本原理和方法;掌握常用建筑材料的种类及其基本性能;了解建筑工业化以及大型公共建筑构造的一般构造原理和基本构造方法;

能根据方案设计图综合运用建筑构造理论和方法,建筑材料及一般结构知识进行一般中、小型民用建筑的构造设计、完成平、立、剖面及部分构造详图的设计。了解和掌握建筑施工图的基本要求和绘制方法。

四、考试形式及时间

考试形式为笔试。考试时间为3小时。

五、参考书目:

建筑构造部分:

#### (1) 考试内容及要求

①考试内容以《建筑构造》上、下册教材为主,辅以相关参考书目、标准图集、建筑资料集有关建筑组成及构件的内容和相关建筑节能、绿色建筑等技术内容。主要参考书目: 1、《中国建筑史》,中国建筑工业出版社; 2、《中国古代建筑史》,刘敦桢主编,中国建筑工业出版社; 3、《华夏意匠》,李允鉌著,中国建筑工业出版社; 4、《外国建筑史(十九世纪末以前)》,中国建筑工业出版社; 5、《外国近现代建筑史》,中国建筑工业出版社; 6、《城市规划原理》,同济大学主编,中国建筑工业出版社; 7、《外国城市建筑史》,沈玉麟编,中国建筑工业出版社; 8、《建筑构造》(上、下册),重庆建筑大学,李必瑜,刘建荣等,中国建筑工业出版社。9、《建筑构造》(第一册、第二册),南京工学院建筑系《建筑构造》编写小组,中国建筑工业出版社。10、《现行建筑设计规范大全》,中国建筑工业出版社编辑出版。11、《建筑设计资料集》(第二版),中国建筑工业出版社编辑出版。12、参考各地建筑设计标准图集。

729 中外美术史及理论

## 一、 考试的总体要求

评卷要求: 历史性知识准确; 基础理论正确; 评论应具有自己的思想及观点。

二、 考试内容及比例

中国美术史 30%; 外国美术史 30%; 设计艺术基础理论 20%; 设计艺术评论 20%。

三、 考试形式及时间

考试形式均为笔试。考试时间为3小时。

## 四、主要参考书目:

- 1、《中国美术史略》人民美术出版社,闫立川著
- 2、《西方现代艺术史》天津人民美术出版社,邹德侬译
- 3、《中国绘画史要》天津人民美术出版社,何延喆著
- 4、《西方美术史话》中国青年出版社 迟轲著

730 美术史论

## 一、考试总体要求:

历史性知识准确, 基本理论正确, 论述方法正确, 具有自己的思想及观点。

二、考试内容:

工笔重彩艺术研究:美术史论

写意画研究:中国美术史

民间美术研究:中国年画史,民间审美研究

三、考试题型:

简答题 2/3,论述题 1/3。

四、考试形式及时间:

考试形式均为笔试,考试时间为3小时

五、参考书目:

## (冯骥才艺术研究院硕士招生参考书目):

- 1、冯骥才著,《灵魂不能下跪》,宁夏人民出版社,2007年。
- 2、冯骥才总主编,《中国木版年画集成》,中华书局出版社,2005—2011年。
- 3、王树村,《中国民间美术史》,岭南美术出版社,2004年。
- 4、李霖灿《中国美术史讲座》,广西师范大学出版社,2010.
- 5、中国美术学院美术史系:《中国美术简史》,中国青年出版社,2004.
- 6、孙建军:《中国民间美术鉴赏》,西南师范大学出版社,2006.
- 7、靳之林:《中国民间美术》, 五洲传播出版社, 2004年。

### (王学仲艺术研究所硕士招生参考书目):

- 1、《中国美术史》薄松年,山西美术人民出版社
- 2、《中国绘画理论史》陈传席,高教出版社

\_\_\_\_\_\_

-----

适用专业名称:美术学(适用数字媒体/动画创作研究方向)

一、考试总体要求:

历史性知识准确,具备基本理论研究能力,具有自己的动画艺术理论研究基础。

二、考试内容:

动画艺术史、论。

三、考试题型:

简答题 1/2, 论述题 1/2。

四、考试形式及时间:

考试形式均为笔试,考试时间为3小时

五、参考书目):

1、动画概论

## 适用专业名称:美术学(适用油画创作研究方向)

一、考试总体要求:

历史性知识准确,具备基本理论研究能力,具有自己的艺术理论研究基础。

二、考试内容:

美术史、论。

三、考试题型:

简答题 1/2,论述题 1/2。

四、考试形式及时间:

考试形式均为笔试,考试时间为3小时

#### 一、 考试的总体要求

- 1、全面掌握城市与城市发展的知识,城乡规划学科知识,城乡规划体系知识,城市用地与空间布局形成的知识,城乡规划编制的知识,城乡规划实施的知识。
- 2、综合了解与掌握与城乡规划工作关系最为密切的八个相关专业领域的知识,即:建筑学、城市交通、城市市政公用设施、信息技术在城乡规划中的应用、城市经济学、城市地理学、城市社会学、城市生态与环境。
- 3、重点掌握城乡规划学科涉及的各种基本概念、基本理论、城乡规划设计的原则和方法以及规划设计的有关技术经济等问题;
- 4、重点了解中国古代、近代城市建设发展的基本特征,了解国外城市建设发展的基本特征,了解国外经典城市发展思想、理论的基本内容;
- 5、重点了解当代城市规划理论和实践的发展变化,对当前热点城市规划理论、思想有一定的认识和理解:
- 6、具有良好的综合分析与思辨能力,以及通过文字或结合绘图的综合表达能力:
- 7、运用基本的城市规划基本理论知识,综合解决新问题,具备一定的触类旁通、关联理解能力。
- 二、 考试的内容、试卷题型及比例:
- (1) 考试内容及要求
- ①能准确地解释与城乡规划基本理论与相关知识的各种名词和基本概念;
- ②能正确、清楚、简明扼要地表述城乡规划设计的原则和方法以及规划设计的有关技术经济问题;
- ③能有理论、有实例、有分析、有观点的通过笔述和绘图,正确表述关于城乡规划学科的各种理论、观点、思潮以及城乡规划建设方面的相关问题。
- (2) 试卷题型及比例
- 一般分为概念(名词解释)题、简答题和叙述题等几个部分。概念题约占 20%, 简答题约占 30%, 叙述题约占 50%。
- 三、 考试形式及时间

考试形式为笔试。考试时间为3小时。

#### 四、参考书目:

1、《城市规划原理》,同济大学主编,中国建筑工业出版社; 2、《中国城市建筑史》,董鉴泓主编,中国建筑工业出版社; 3、《外国城市建筑史》,沈玉麟编,中国建筑工业出版社; 4、《城市规划》、《城市规划学刊(汇刊)》、《外国城市规划》等杂志; 5、《城市工程系统规划》,戴慎志,中国建筑工业出版社,1999; 6、《城市道路与交通规划》(上),徐循初,汤宇卿,建工出版社,2005; 7、《大都市地区快速交通和城镇发展》,潘海啸,同济大学出版社,2002; 8、全国注册城市规划师执业资格考试参考用书之二《城市规划相关知识》,全国城市规划执业制度管理委员会。

## 一、考试的总体要求

细胞生物学入学考试在考查基本知识、基本理论的基础上,注重考查考生的综合分析和解决问题的能力。考生应能:准确地掌握细胞生物学方面的基本概念、基础理论和实验方法;对近期国内外有关细胞生物学杰出成果应有所了解;具有综合运用所学基本概念和基础理论分析问题与解决问题的能力。

## 二、考试内容

- 1、细胞生物学的主要研究内容,细胞生物学发展简史,当前细胞生物学研究的总趋势与重点领域。
- 2、细胞基本知识概要(细胞的基本概念、细胞的共性、细胞形态结构和化学组成与功能的相关性;了解关于病毒与细胞的关系)。
- 3、细胞形态结构的研究技术方法和基本原理(光学显微镜、电子显微镜),了解细胞培养、细胞工程、显微操作、活体染色等技术方法。
- 4、细胞质基质与细胞内膜系统(细胞质基本知识,内质网、高尔基复合体、线粒体等的基本结构以及功能;溶酶体与过氧化物酶体的结构特点,功能)。
- 5、细胞的能量转换——线粒体和叶绿体的结构、功能、叶绿体的半自性细胞器特点。
- 6、细胞骨架、微丝的基本成分及其功能、微管的基本成分及其功能、中间纤维的基本知识。 核骨架、核基质的结构和化学组成特点以及功能意义,染色体支架及其与核基质的关系。
- 7、核糖体的结构成分及其功能,多聚核糖体与蛋白质的合成。
- 8、细胞核与染色体(核被膜的一般形态结构特点和生物学意义、组蛋白的种类和特点、中期染色体的显微形态学、染色体 DNA 序列的重复性、了解巨大染色体)。
- 9、细胞膜与细胞表面的结构与识别(细胞膜的基本组成成分,细胞膜的基本功能,细胞连接的方式,细胞外被与细胞外基质的成分、功能)。
- 10、细胞通讯和信号转导(细胞识别、细胞通讯、受体、信号通路、第一信使、第二信使)。
- 11、细胞增殖及其调控(有丝分裂的形态学过程,时相划分及各时相的变化标志、减数分裂的形态学过程,时期划分和各期的主要变化特征、细胞周期和细胞增殖的调控)。
- 12、程序性细胞死亡与细胞衰老(细胞衰老的分子机制、细胞凋亡的概念及其生物学意义、细胞凋亡的形态学和生物化学特性,细胞凋亡的分子机制,植物细胞的凋亡,细胞凋亡与衰老)。
- 13、细胞分化与基因表达调控(细胞分化的基本概念、特点,癌细胞的基本特征及肿瘤的发生等)。

#### 三、考试的题型及比例

试题包括概念题及简答题及论述题。概念题分为名词解释和选择题两类,约占总分的20~25%;简答题一般为5-7题,约占总分的60%,论述题一般为1题,约占总分的15~20%。

#### 四、考试形式及时间

考试形式为笔试。考试时间为3小时,满分150分。

参考书目:《细胞生物学》翟中和,第三版,高等教育出版社

734 教育学综合

#### 一、考查目标

教育学综合考试内容包括教育学原理、中外教育史、教育心理学和教育科学研究方法四门 教育学科基础课程,要求考生系统掌握相关学科的基本知识、基础理论和基本方法,并能运 用相关理论和方法分析、解决教育实际问题。

## 二、考试形式与试卷结构

(一) 试卷成绩及考试时间

本试卷满分为300分,考试时间为180分钟。

(二) 答题方式

答题方式为闭卷、笔试。

(三) 试卷内容结构

各部分内容所占分值为:

教育学原理约 100 分中外教育史约 100 分教育心理学约 50 分教育科学研究方法约 50 分

(四) 试卷题型结构

名词解释题: 12 小题,每小题 5 分,共 60 分

简答题: 10 小题,每小题 10 分,共 100 分

分析论述题: 7小题,每小题 20分,共140分

三、考查范围

## 教育学原理

- 一、考查目标
- 1、系统掌握教育学原理的基础知识、基本概念、基本理论和现代教育观念。
- 2、理解课程、教学、德育、学生活动、学校管理等教育活动的任务、过程、原则和方法。
- 3、运用所学的基本理论、基本知识和基本方法分析、判断和解决有关教育的理论问题 和实际问题。
  - 二、考查内容
  - 一、教育学概述
  - (一)教育学的研究对象
  - (二)教育学的研究任务
  - (三)教育学的产生与发展

(各阶段代表性、有影响的教育家、教育著作、教育思想和教育理论)

- 1、教育学的萌芽
- 2、独立形态教育学的产生与发展
- 3、教育学发展的多样化
- 4、教育学的理论深化
- 二、教育的概念及其产生与发展
- (一)教育的质的规定性
- 1、教育是有目的地培养人的社会活动
- 2、有目的地培养人,是教育这一社会现象与其他社会现象的根本区别,是教育的本质 特点

- (二)教育的基本要素
- 1、教育者
- 2、受教育者
- 3、教育中介系统
- (三)教育概念的界定
- 1、广义的教育
- 2、狭义的教育
- (四)我国关于教育本质问题的主要观点
- 1、教育是上层建筑
- 2、教育是生产力
- 3、教育具有上层建筑和生产力的双重属性
- 4、教育是一种综合性的社会实践活动
- 5、教育是促进个体社会化的过程
- 6、教育是培养人的社会活动
- (五)教育起源的主要观点
- 1、生物起源说
- 2、心理起源说
- 3、劳动起源说
- (六)教育的历史发展
- 1、古代教育的特征
- 2、近代教育的特征
- 3、现代教育的特征
- 三、教育与人的发展
- (一)人的发展概述
- 1、人的发展涵义
- 2、人的发展特点
- 3、人的发展的规律性
- (二)影响人的发展的基本因素
- 1、影响人的身心发展因素的主要观点
- (1) 单因素论与多因素论
- (2) 内发论与外铄论
- (3) 内因与外因交互作用论
- 2、影响人的身心发展的主要因素
- (1) 遗传在人的发展中的作用
- (2) 环境在人的发展中的作用
- (3) 个体的能动性在人的发展中的作用
- (三)教育对人的发展的重大作用
- 1、个体个性化与个体社会化
- 2、学校教育在人的身心发展中的主导作用及有效发挥的条件
- (教育是一种有目的地培养人的社会活动;教育主要通过文化知识的传递来培养人;教育对人的发展的作用越来越大。)
  - (四)人的身心发展特点对教育的制约

发展的顺序性、阶段性、差异性、不平衡性等对教育的制约

四、教育与社会发展

- (一)教育与社会发展关系的主要理论
- 1、教育独立论
- 2、教育万能论
- 3、人力资本论
- 4、筛选假设理论
- 5、劳动力市场理论
- (二)教育的社会制约性
- 1、生产力对教育发展的影响和制约
- 2、政治经济制度对教育发展的影响和制约
- 3、文化对教育发展的影响和制约
- 4、科学技术对教育发展的影响和制约
- 5、人口对教育发展的影响和制约
- (三)教育的社会功能
- 1、教育的社会变迁功能
- (1) 教育的经济功能
- (2) 教育的政治功能
- (3) 教育的文化功能
- (4) 教育的生态功能
- 2、教育的社会流动功能
- (1) 教育的社会流动功能的涵义
- (2) 教育的社会流动功能在当代的重要意义
- 3、教育的社会功能与教育的相对独立性
- (四) 当代社会发展对教育的需求及教育面临的挑战
- 1、当代社会变革与教育发展
- (1) 现代化与教育变革
- (2) 全球化与教育变革
- (3) 知识经济与教育变革
- (4) 信息社会与教育变革
- (5) 多元文化与教育变革
- 2、我国社会发展与教育
- (1) 教育在我国社会主义建设中的地位和作用
- (2) 科教兴国与国兴科教
- 五、教育目的与培养目标
- (一)教育目的
- 1、教育目的的概念
- (1) 教育目的的定义
- (2) 教育目的与教育方针的关系
- (3) 教育目的的层次结构和内容结构
- 2、教育目的的理论基础及主要理论
- (1) 教育目的的理论基础
- (教育目的的社会制约性;教育目的的价值取向;马克思主义关于人的全面发展学说)
- (2) 关于教育目的的主要理论
- (个人本位论,社会本位论;内在目的论,外在目的论,教育准备生活说,教育适应生活说等)

- 3、教育目的确立的依据
- 4、我国的教育目的
- (1) 我国 1949 年以来各个时期的教育目的
- (2) 我国教育目的的精神实质
- (培养"劳动者"或"社会主义建设人才";坚持全面发展;培养独立个性)
- 5、全面发展教育的构成
- (1) 全面发展教育的组成部分
- (2) 全面发展教育各组成部分之间的关系
- (二) 培养目标
- 1、培养目标的概念
- (1) 培养目标的定义
- (2) 培养目标与教育目的的关系
- 2、我国中小学培养目标
- (1) 普通中小学的性质与任务
- (2) 普通中小学教育的组成部分
- (3) 体育、智育、德育、美育和综合实践活动等概念及其相互关系

#### 六、教育制度

- (一)教育制度的概念
- 1、教育制度的含义和特点
- 2、教育制度的历史发展
- (二) 学校教育制度
- 1、学制的概念与要素
- (1) 学校教育制度的概念
- (2) 学制的主要类型
- (双轨学制; 单轨学制; 分支型学制)
- 2、学制确立的依据
- (三) 我国现行学校教育制度
- 1、我国现行学校教育制度的演变
- (1949年以来我国的学制: 1951年学制; 1958年学制改革; 改革开放以来的学制改革)
- 2、我国现行学校教育制度的形态
- (1) 各级学校系统
- (2) 各类学校系统
- 3、我国现行学校教育制度的改革
- (1) 义务教育年限的延长
- (2) 普通教育与职业教育的综合化
- (3) 高等教育的大众化
- (4) 终身教育体系的建构
- 七、课程
- (一) 课程的概念
- 1、课程的定义
- 2、课程及课程方案、课程标准、教科书等概念的关系
- 3、课程与教学的关系
- (二)课程理论
- 1、课程理论及主要流派

2、争论的主要问题

(知识中心课程理论: 社会中心课程理论: 学习者中心课程理论)

- (三)课程类型
- 1、学科课程与活动课程
- 2、综合课程与分科课程
- 3、必修课程与选修课程。
- (四)课程编制
- 1、泰勒原理
- 2、课程目标
- (1) 课程目标的概念
- (2) 课程目标的来源
- (3) 课程目标与培养目标、教学目标的关系
- (4) 布鲁姆教育目标分类学。
- 4、课程的内容及结构
- (五)课程实施
- 1、课程实施的取向
- 2、影响课程实施的因素
- (六)课程评价
- 1、课程评价的含义
- 2、课程评价的主要范围
- 3、课程评价的主要模式
- (七)课程改革
- 1、影响课程改革的主要因素

(政治因素; 经济囚素; 文化因素; 科技革新; 学生发展)

- 2、20世纪60年代以来国外的主要课程改革
- 3、当前我国基础教育课程改革
- 八、教学
- (一) 教学概述
- 1、教学的概念
- (1) 教学的定义
- (2) 教学与教育、智育、上课的区别与联系
- 2、教学的主要作用与任务
- (二) 教学理论及主要流派
- 1、教学理论概述
- (1) 学习理论及其与教学理论的关系
- (2) 教学理论与课程理论的关系
- (3) 教学理论的形成与发展
- 2、当代主要教学理论流派
- (1) 行为主义教学理论
- (2) 认知主义教学理论
- (3) 人本主义教学理论
- (三) 教学过程
- 1、关于教学过程本质的主要观点
- 2、教学过程中应处理好的几种关系

- (1) 间接经验与直接经验的关系
- (2) 掌握知识与培养思想品德的关系
- (3) 掌握知识与提高能力的关系
- (4) 智力因素与非智力因素的关系
- (5) 教师主导作用与学生主体作用的关系
- 3、教学设计
- (1) 教学设计的概念
- (2) 教学设计的过程与方法
- (3) 教学设计的模式
- (四)教学模式
- 1、教学模式概述
- (1) 教学模式的概念
- (2) 教学模式的特点
- (3) 教学模式的结构
- 2、当代国外主要教学模式
- (1) 程序教学模式
- (2) 发现教学模式
- (3) 掌握学习教学模式
- (4) 暗示教学模式
- (5) 范例教学模式
- (6) 非指导性教学模式
- 3、当代我国主要教学模式
- (五) 教学原则
- 1、教学原则的概念及确立依据
- 2、中小学教学的基本原则
- (1) 直观性原则
- (2) 启发性原则
- (3) 系统性原则
- (4) 巩固性原则
- (5) 量力性原则
- (6) 思想性和科学性统一的原则
- (7) 理论联系实际原则
- (8) 因材施教原则
- (六) 教学组织形式
- 1、教学组织形式的历史发展
- 2、教学的基本组织形式
- (1) 个别教学制
- (2) 班级上课制
- (3) 分组教学制
- 3、班级授课制
- 4、教学组织形式的改革
- (七)中小学常用教学方法
- 1、教学方法概述
- (1) 教学方法及教学方式、教学手段、教学模式、教学策略等概念

- (2) 教学方法的选择
- 2、中小学常用教学方法
- (1) 讲授法
- (2) 谈话法
- (3) 读书指导法
- (4) 练习法
- (4) 演示法
- (6) 实验法
- (7) 实习作业法
- (8) 讨论法
- (9) 研究法
- (八)教学工作的基本环节
- 1、备课
- 2、上课
- 3、作业的布置与批改
- 4、课外辅导
- 5、学业考评
- (九) 教学评价及其改革
- 1、教学评价的概念及其功能
- 2、教学评价的种类
- (1) 诊断性评价
- (2) 形成性评价
- (3) 终结性评价
- 3、教学评价的原则与方法
- 4、学生学业成就评价
- 5、教师教学工作的评价
- 6、教学评价的改革
- 九、德育
- (一) 德育概述
- 1、德育概念
- 2、德育的功能
- 3、德育任务和内容
- 4、德育的特点
- 5、我国学校德育的基本内容
- (1) 道德教育、思想教育、政治教育和法制教育
- (2)《小学德育纲要》与《中学德育大纲》
- (二) 德育过程及相关理论
- 1、德育过程的要素
- 2、德育过程的规律
- 3、德育过程主要理论
- (三) 德育原则
- 1、集体教育与个别教育相结合
- 2、知行统一
- 3、正面引导与纪律约束相结合

- 4、发挥积极因素与克服消极因素相结合
- 5、严格要求与尊重信任相结合
- 6、照顾年龄特点与照顾个别特点相结合
- 7、教育影响的一致性
- 8、教育影响的连续性
- (四) 德育方法
- 1、说服教育
- 2、情感陶冶
- 3、实践锻炼
- 4、自我教育
- 5、榜样示范
- 6、品德评价
- (五) 德育途径
- 1、直接的道德教学
- 2、间接的道德教育
- (六) 德育模式
- 1、道德认知发展模式
- 2、体谅模式
- 3、价值澄清模式
- 4、社会学习模式
- 5、集体教育模式。
- 十、教师与学生
- (一) 教师
- 1、教师的概念与类别
- 2、教师职业的产生与发展
- 3、教师的地位与作用
- 4、教师劳动的价值和特点
- 5、教师的权利与义务
- 6、教师的基本素养
- 7、教师专业发展的内涵与途径
- (1) 教师的培养和专业水平提高的紧迫性
- (2) 教师个体专业性发展的过程
- (3) 培养和提高教师素养的主要途径
- (二) 学生
- 1、学生及学生观
- 2、学生群体
- (1) 正式群体与非正式群体
- (2) 学生群体的作用
- 3、学生的权利和义务
- (三) 师生关系
- 1、师生关系的特点与类型
- (1) 学生中心论
- (2) 教师中心论
- 2、良好师生关系的建立

- (1) 良好师生关系的标准
- (2) 建立良好师生关系的途径与方法
- (四) 班主任
- 1、班主任工作概述
- (1) 班主任工作的意义与任务
- (2) 班主任素质的要求
- 2、班集体的培养
- (1) 班集体的教育功能
- (2) 班集体与学生群体
- (3) 集体的发展阶段
- (4) 培养集体的方法
- 3, 班主任工作的内容和方法

(了解和研究学生;教导学生学好功课;组织班会活动;组织课外活动、校外活动和指导课余生活;组织学生的劳动;通过家访建立家校联系;协调各方面对学生的要求;评定学生操行;做好班主任工作的计划与总结。)

十一、学校管理

- (一) 学校管理概述
- 1、学校管理的概念
- 2、学校管理的构成要素
- 3、学校管理体制
- 4、校长负责制
- (二) 学校管理的目标与过程
- 1、学校管理目标
- 2、学校管理过程的基本环节及其相互关系
- (三) 学校管理的内容和要求
- 1、教学管理
- 2、教师管理
- 3、学生管理
- 4、总务管理

(四)学校管理的发展趋势

- 1、学校管理法治化
- 2、学校管理人性化
- 3、学校管理校本化
- 4、学校管理信息化

#### 参考书目

- 1、王道俊:《教育学》,人民教育出版社,2009年版;
- 2、全国十二所重点师范大学编:《教育学基础》,教育科学出版社,2008年第2版;
- 3、黄济、王策三著:《现代教育论》,人民教育出版社,1996年版。

# 中外教育史

- 一、考查目标
- 1、系统掌握中外教育史的基本知识,了解教育思想演变、教育制度发展、教育实施进程的基本线索,特别是主要教育家的教育思想、重要的教育制度、重大的教育事件。
  - 2、准确理解有关中外教育史的基本文献,特别是其中的代表性材料。
  - 3、正确运用辩证唯物主义和历史唯物主义的观点分析、评价中外教育史实,总结经验

与教训,为现实的教育改革与发展提供理论启示。

- 二、考查内容
- 一、中国古代教育
- (一) 官学制度的建立与"六艺"教育的形成
- 1、学校萌芽的传说
- 2、两周的教育制度
- "学在官府"; 大学与小学: 国学与乡学: 家庭教育。
- 3、"六艺"教育
- (二)私人讲学的兴起与传统教育思想的奠基
- 1、私人讲学的兴起与诸子百家私学的发展
- 2、齐国的稷下学宫
- 3、孔丘的教育实践与教育思想

创办私学与编订"六经";"庶、富、教"、"性相近也,习相远也"与教育作用和地位;"有教无类"与教育对象;"学而优则仕"与教育目的;教学内容;教学方法:因材施教、启发诱导、学思行并重;道德教育;论教师;历史影响。

4、孟轲的教育思想

思孟学派:"性善论"与教育作用;"明人伦"与教育目的;"大丈夫"的人格理想;"深造自得"的教学思想。

5、荀况的教育思想

荀况与"六经"的传授;"性恶论"与教育作用;以"大儒"为培养目标;以儒经为教学内容; "闻见知行"结合的学习过程与方法;论教师。

6、墨家的教育思想

"农与工肆之人"的代表;"素丝说"与教育作用;以"兼士"为培养目标;以科技和思维训练为特色的教育内容;主动、创造的教育方法。

- 7、道家的教育思想
- "法自然"与教育作用;"逍遥"的人格理想;提倡怀疑的学习方法。
- 8、法家的教育实践与思想
- "人性利己说"与教育作用:禁诗书与"以法为教";禁私学与"以吏为师"
- 9、战国后期的教育论著

《大学》:《中庸》:《学记》:《乐记》。

- (三) 儒学独尊与读经做官教育模式的初步形成
- 1、"独尊儒术"文教政策的确立
- 2、太学、郡国学与鸿都门学
- 3、察举制度
- 4、董仲舒的教育实践与教育思想

《对贤良策》与三大文教政策;论人性与教育作用;论道德教育。

5、王充的教育实践与教育思想

对谶纬神学的批判;关于教育作用与培养目标;论学习。

(四) 封建国家教育体制的完善

1、魏晋南北朝官学的变革

西晋的国子学;南朝宋的"四馆"与总明观。

2、隋唐时期教育体系的完备

文教政策的探索与稳定; 政府教育管理机构和体制的确立; 中央和地方官学体系的完备; 私学发展; 学校教育发展的特点。

3、科举制度的建立

科举制度的萌芽与确立;科举考试的程序、科目与方法:科举制度与学校教育的关系;科举制度的影响。

4、颜之推的教育思想

颜之推与《颜氏家训》;论士大夫教育;论家庭教育。

5、韩愈的教育思想

"性三品"说与教育作用:关于人才培养和选拔的思想:论尊师重道。

(五)理学教育思想和学校的改革与发展

1、科举制度的演变与官学的改革

科举制度的演变;学校沦为科举附庸;宋代"兴文教"政策;北宋三次兴学与"三舍法";"苏湖教法";积分法;"六等黜陟法";"监生历事";社学。

2、书院的发展

书院的产生与发展;《白鹿洞书院揭示》与书院教育宗旨: 东林书院与书院讲会; 诂经精舍、学海堂与书院学术研究; 书院教育的特点。

3、私塾与蒙学教材

私塾的发展与种类:蒙学教材的发展、种类和特点。

4、朱熹的教育思想

朱熹与《四书章句集注》;"明天理,灭人欲"与教育作用;论"大学"和"小学"教育;"朱子读书法"。

5、王守仁的教育思想

"致良知"与教育作用;"随人分限所及"的教育原则;论教学;论儿童教育。

(六) 理学教育思想的批判与反思

- 1、理学教育思想的批判
- 2、黄宗羲的"公其非是于学校"
- 3、颜元的教育思想

颜元与漳南书院;"实德实才"的培养目标;"六斋"与"实学"的教育内容;"习行"的教学方法。

- 二、中国近代教育
- (一) 近代教育的起步
- 1、教会学校在中国的举办
- 2、洋务学堂的兴办

洋务学堂的举办、类别和特点;京师同文馆;福建船政学堂。

3、留学教育的起步

幼童留美:派遣留欧。

- 4、"中体西用"思想与张之洞的《劝学篇》
- "中体西用"思想的形成和发展;张之洞与《劝学篇》;"中体西用"的历史作用和局限。
- (二) 近代教育体系的建立
- 1、维新派的教育实践

兴办学堂; 兴办学会与发行报刊。

2、"百日维新"中的教育改革

创办京师大学堂; 改革科举制度。

3、康有为的教育思想

维新运动中的教育改革主张;《大同书》中的教育理想。

4、梁启超的教育思想

"开民智"、"伸民权"与教育作用;培养"新民"的教育目的;论学制:论师范教育、女子教育和儿童教育。

5、严复的教育思想

"鼓民力"、"开民智"、"新民德"的"三育论";"体用一致"的文化教育观。

6、清末新政时期的教育改革

"壬寅学制"和"癸卯学制"的颁布;废科举,兴学堂;建立教育行政体制:确定教育宗旨。

7、清末的留学教育

留日教育;"庚款兴学"与留美教育。

(三) 近代教育体制的变革

1、民国初年的教育改革

制定教育方针;颁布学制;颁布课程标准。

2、蔡元培的教育思想与实践

"五育并举"的教育方针;改革北京大学的教育实践;教育独立思想。

3、新文化运动时期和20年代的教育思潮与教育改革运动

平民教育思潮;工读主义教育思潮;职业教育思潮;实用主义教育思潮;勤工俭学运动; 科学教育思潮;国家主义教育思潮;学校教学改革与实验。

- 4、教会教育的扩张与收回教育权运动
- 5、1922年"新学制"

七项标准; 学制体系与特点。

三、中国现代教育

- (一) 南京国民政府的教育
- 1、教育宗旨与教育方针的变迁

党化教育: "三民主义"教育宗旨: "战时须作平时看"的教育方针。

2、教育制度改革

大学院和大学区制的试行;"戊辰学制"的颁行。

3、学校教育发展

初等教育;中等教育;高等教育;抗日战争时期的学校西迁。

4、学校教育的管理措施

训育制度;中小学校的童子军训练;高中以上学生的军训;中学毕业会考。

- (二)中国共产党领导下的革命根据地教育
- 1、新民主主义教育方针的形成

苏维埃文化教育总方针; 抗日战争时期中国共产党的教育方针政策; "民族的、科学的、 大众的"文化教育方针。

2, 干部教育

干部在职培训;干部学校教育;"抗大"。

- 3、群众教育
- 4、普通教育

根据地的小学教育;解放区中小学教育的正规化;解放区高等教育的整顿与建设。

- 5、革命根据地教育的基本经验
- (三)现代教育家的教育理论与实践
- 1、杨贤江与马克思主义教育理论

论教育本质;"全人生指导"与青年教育。

2、黄炎培的职业教育思想与实践

职业教育的探索:职业教育思想体系。

- 3、晏阳初的乡村教育实验
- "四大教育"与"三大方式": "化农民"与"农民化"。
- 4、梁漱溟的乡村教育建设
- 乡村建设和乡村教育理论;乡村教育的实施。
- 5、陈鹤琴的"活教育"探索
- 儿童教育和"活教育"实验;"活教育"思想体系。
- 6、陶行知的"生活教育"思想与实践
- "生活教育"实践:晓庄学校;山海工学团;"小先生制";育才学校;"生活教育"理论体系。
  - 四、外国古代教育
  - (一) 东方文明古国的教育
  - 1、巴比伦的教育
  - 巴比伦的学校: 巴比伦学校的教学内容与方法。
  - 2、古代埃及的教育
  - 古代埃及的学校; 古代埃及学校教育的内容与方法。
  - 3、古代印度的教育
  - 婆罗门教育; 佛教教育。
  - 4、古代东方文明古国教育发展的特点
  - (二) 古希腊教育
  - 1、古风时代的教育
  - 斯巴达教育; 雅典教育。
  - 2、古典时代的教育
  - "智者派"的教育活动与教育贡献。
  - 3、希腊化时期的教育
  - 4、苏格拉底的教育思想
  - 教育目的论;德育论;智育论;"苏格拉底方法"。
  - 5、柏拉图的教育思想
  - "学习即回忆";《理想国》中的教育观。
  - 6、亚里士多德的教育思想
  - 灵魂论与教育;教育作用论。
  - (三) 古罗马教育
  - 1、共和时期的罗马教育
  - 2、帝国时期的罗马教育
  - 3、古罗马的教育思想
  - 西塞罗的教育思想; 昆体良的教育思想; 奥古斯丁的教育思想。
  - (四) 西欧中世纪教育
  - 1、基督教教育
  - 基督教的教育形式、机构和教育内容;基督教的教育思想。
  - 2、封建主贵族的世俗教育
  - 宫廷学校;骑士教育。
  - 3、中世纪大学的形成与发展
  - 4、新兴市民阶层的形成和城市学校的发展
  - (五) 拜占廷与阿拉伯的教育
  - 1、拜占廷的教育

教育概况;教育的特点及其影响。

2、阿拉伯的教育

教育概况;教育的特点及其影响。

五、外国近代教育

(一) 文艺复兴与宗教改革时期的教育

1、人文主义教育

意大利人文主义教育:北欧人文主义教育:人文主义教育的基本特征。

2、新教教育

路德派新教的教育主张与教育实践;加尔文派新教的教育主张;英国国教派的教育主张

3、天主教教育

耶稣会的学校; 耶稣会学校的组织管理与教学方式。

(二) 欧美主要国家和日本的近代教育

1、英国近代教育

教育概况;教育思想:洛克、斯宾塞论教育。

2、法国近代教育

教育概况;教育思想:爱尔维修、狄德罗、拉夏洛泰论教育;法国大革命时期的主要教育改革方案和教育主张。

3、德国近代教育

教育概况;教育思想:第斯多惠论教育。

4、俄国近代教育

教育概况;教育思想:乌申斯基论教育。

5、美国近代教育

教育概况:教育思想:贺拉斯•曼论教育。

6、日本近代教育

教育概况;教育思想;福泽谕吉论教育。

(三) 西欧近代教育思想

1、夸美纽斯的教育思想

论教育的目的和作用;论教育适应自然的原则;论普及教育和统一学制;论学年制和班级授课制;论教学原则;论道德教育;教育管理思想。

2、卢梭的教育思想

自然教育理论及其影响:公民教育理论。

3、裴斯泰洛齐的教育思想

教育实践活动;论教育目的;论教育心理学化;论要素教育;建立初等学校各科教学法;教育与生产劳动相结合。

4、赫尔巴特的教育思想

教育实践活动;教育思想的理论基础;道德教育理论;课程理论;教学理论;赫尔巴特教育思想的传播。

5、福禄培尔的教育思想

论教育的基本原理; 幼儿园教育理论。

6、马克思和恩格斯的教育思想

对空想社会主义教育思想的批判继承;论教育与社会的关系;论教育与社会生产;论人的本质和个性形成;论人的全面发展与教育的关系:论教育与生产劳动相结合的重大意义。

六、外国现代教育

(一) 19 世纪末至 20 世纪前期欧美教育思潮和教育实验

### 1、新教育运动

新教育运动的形成和发展;新教育运动中的著名实验;新教育运动中的主要理论:梅伊曼、拉伊的实验教育学,凯兴斯泰纳的"公民教育"与"劳作学校"理论,蒙台梭利的教育思想。

### 2、进步教育运动

进步教育运动始末;进步教育实验:昆西教学法、有机教育学校、葛雷制、道尔顿制、文纳特卡计划、设计教学法。

### (二) 欧美主要国家和日本的现代教育制度

## 1、英国教育的发展

《巴尔福教育法》与教育行政管理体制的变化;《费舍教育法》;《哈多报告》;《斯宾斯报告》;《1944年教育法》;"罗宾斯原则";《雷沃休姆报告》;《1988年教育改革法》。

#### 2、法国教育的发展

《费里教育法》;统—学校运动与学制改革;中学课程的改革;《阿斯蒂埃法》与职业技术教育的发展;《郎之万一瓦隆教育改革方案》;《教育改革法》;《高等教育方向指导法》(《富尔法案》);《法国学校体制现代化建议》(《哈比改革》);《课程宪章》。

#### 3、德国教育的发展

德意志帝国与魏玛共和国时期的教育;《改组和统一公立普通学校教育的总纲计划》;《高等学校总纲法》。

### 4、美国教育的发展

中等教育的改革和发展:《中等教育的基本原则》、"八年研究";初级学院运动;职业技术教育的发展:"全国职业教育促进会"、《史密斯一休斯法案》。

《国防教育法》和 20 世纪 60 年代的教育改革; 20 世纪 70 年代的教育改革: 生计教育、"返回基础": 20 世纪八九十年代的教育改革:《国家在危机中:教育改革势在必行》。

#### 5、日本教育的发展

20世纪初期至20年代末的教育改革与发展:《教育敕语》、《大学令》;军国主义教育体制的形成和发展。

《教育基本法》和《学校教育法》; 20 世纪七八十年代的教育改革。

### 6、苏联教育的发展

建国初期的教育改革;教育管理体制改革的内容及成效;《统一劳动学校规程》。

20世纪20年代的学制调整和教学改革实验: "综合教学大纲"、"劳动教学法"; 20世纪30年代教育的调整、巩固和发展:《关于小学和中学的决定》。

第二次世界大战后的教育改革: 1958 年的教育改革、1966 年的教育改革、1977 年以后的教育改革。

苏联教育思想: 马卡连柯的教育思想、凯洛夫的《教育学》、赞科夫的教学理论、苏霍姆林斯基的教育理论。

### (三) 现代欧美教育思想

#### 1、杜威的教育思想

教育实践活动;论教育的本质;论教育的目的;论课程与教材;论思维与教学方法;论道德教育;杜威教育思想的影响。

# 2、现代欧美教育思潮

改造主义教育;要素主义教育;永恒主义教育;新托马斯主义教育;存在主义教育;新 行为主义教育;结构主义教育;分析教育哲学;终身教育思潮;现代人文主义教育思潮。

## 参考书目

《中国教育史》(孙培青主编,华东师范大学出版社出版),《外国教育史教程》(吴式颖主编,人民教育出版社出版)

### 教育心理学

- 一、考查目标
- 1、系统掌握教育心理学的基础知识、基本概念和基本理论。
- 2、理解学生心理发展的特点和水平、学习理论、学习动力、学习机制、学习策略、知识和技能学习、问题解决与创造性的原理和方法。
- 3、能运用教育心理学的基本理论来分析和解决态度与品德形成、教学设计、教学评价、 课堂管理的现实问题。
  - 二、考查内容
- (一) 教育心理学及其研究
  - 1、教育心理学的研究对象与应用
  - 2、教育心理学的发展概况
- (二) 学生与教师心理
- 1、学生心理: 学生的认知发展、学生的情感和个性发展、学生的个体差异
- 2、教师心理: 教师的角色与特征和专业品质、教师的成长和培养、教师职业倦怠
- (三) 学习理论
- 1、行为学习理论: 经典性条件作用理论、联结主义理论、操作性条件作用理论、社会学习理论及行为主义新进展
- 2、认知学习理论:早期的认知学习理论、认知结构学习理论、认知同化学习理论、学习的信息加工论
- 3、建构主义与人本主义学习理论:建构主义思想渊源与基本观点、个人建构主义理论、社会建构主义理论、人本主义学习理论
- (四) 学习动机
  - 1、学习动机概述及学习动机理论
  - 2、学习动机的培养与激发
- (五)知识及技能的学习
  - 1、知识的分类、理解与表征
  - 2、知识学习与迁移
  - 3、技能的学习: 动作技能学习、心智技能学习
- (六)问题解决的学习与创造性
  - 1、问题与问题解决
  - 2、问题解决的过程
  - 3、问题解决的训练
  - 4、创造性思维
- (七) 学习策略
  - 1、学习策略概述
  - 2、认知策略
  - 3、元认知策略与资源管理策略
- (八) 品德
  - 1、品德心理概述及道德发展的理论
  - 2、品德的形成与培养
  - 3、学生不良行为的矫正
- (十) 教学心理
  - 1、教学设计:设置教学目标、选择教学模式、设置教学环境
  - 2、课堂管理:课堂管理过程、处理严重的问题行为

# (十一) 教学评价

- 1、教学评价与学习评定
- 2、测验:标准化测验、教师自编测验
- 3、真实性评定与评定结果报告

#### 参考书目

陈琦,刘儒德,当代教育心理学,北京师范大学出版社,2007 教育科学研究方法

- 一、考查目标
- 1、系统掌握教育科学研究方法的基础知识、基本概念和基本理论。
- 2、掌握教育科学研究方法的一般概念与原理、教育科学研究课题选择与研究准备、研究文献查阅与综述、研究设计、各种具体研究方法的原理、程序与评价、教育科学研究结果及其解释。
  - 3、能运用教育科学研究方法基本理论来分析、设计和评价具体的教育科学研究课题。
  - 二、考查内容
- (一)教育科学研究概述
  - 1、科学与科学研究
  - 2、教育科学研究的作用和意义
  - 3、教育科学研究的一般过程
  - 4、教育科学研究的特殊性
  - 5、教育科学研究的原则
- (二)课题选择与研究假设
- 1、研究课题的选择
- 2、研究假设的提出
- (三)研究文献的查阅
  - 1、研究文献的类别与特点
  - 2、研究文献搜集
  - 3、研究文献综述

### (四)研究设计

- 1、研究设计的内容
- 2、研究设计的方法
- 3、研究变量与观测指标
- 4、研究对象取样设计
- 5、研究工具与材料
- 6、研究环境设计
- 7、无关变量的类型与控制
- 8、数据整理与统计方法选择

### (五)观察法

- 1、观察法的概念、特点及类型
- 2、观察法的策略与实施
- 3、观察法的评价

### (六)调查法

- 1、访谈法的概念、特点及类型
- 2、访谈法的设计及评价
- 3、问卷法的概念、特点及类型

- 4、问卷的设计的步骤、问题表述方式、问题排列方式、回答方式设计
- 6、问卷法实施的程序
- 7、问卷法的评价

# (七) 测验法

- 1、测验法的概念、特点及类型
- 2、常用测验
- 3、测验法的评价

# (八) 实验法

- 1、实验法的概念、特点及类型
- 2、实验设计
- 3、实验法的评价

# (九) 现场研究

- 1、现场研究的概念、特点及类型
- 2、现场研究的评价

# (十) 社会测量法

- 1、社会测量法的概念、特点及类型
- 2、社会测量法的设计与实施
- 3、社会测量法的评价

# (十一) 研究结果的解释

- 1、研究结果解释的内容与方法
- 2、研究结果解释与结论的概括性
- 3、研究结果解释与理论建构

# 参考书目

董奇,心理与教育科学研究方法,北京师范大学出版社,2004

735

# 一、考试的总体要求

考生应系统掌握中外文化与汉语言的基础知识、基本理论和基本方法,能运用跨文化教育的 基本理论解决实际问题。

# 二、考试的内容及比例

中国文化史 20 分;中国文化基础知识 20 分;外国文化史 25 分;外国文化基础知识 15 分;中外文化比较 70 分%;现代汉语基础 75 分;汉语言基础语法 75 分

# 三、试卷题型及比例

试卷题型包括三种:名词解释、简答和分析论述,其比例分别为:50分、100分和150分。 四、考试形式

## (一) 试卷总分及考试时间

本试卷满分为300分,考试时间为180分钟。

(二) 答题方式

闭卷、笔试。

五、主要参考教材

- 1、《中国文化概论》(张岱年、方克立,北师大出版社)
- 2、《西方文化概论》(曹顺庆主编,中国人民大学出版社)
- 3、《语言学纲要》(叶蜚声、徐通锵,北京大学出版社)

801 理论力学

### 一、 考试的总体要求

本门课程主要考察学生对理论力学基本概念、基本理论和基本方法的掌握程度。要求运用力学的基本理论和基本方法熟练进行研究对象的受力分析、静力学平衡问题求解;运动分析、各运动量的求解;动力学分析及动力学综合问题的求解。

二、考试的内容及比例

静力学 (20 ~ 40%):

- (1) 掌握各种常见约束类型。对物体系统能熟练地进行受力分析。
- (2) 熟练计算力的投影和力矩、力偶。
- (3)应用各类平面力系的平衡方程求解单个物体、物体系统和平面桁架的平衡问题(主要是求约束反力和桁架内力问题)。
- (4)考虑滑动摩擦时平面物系的平衡问题。

运动学 (20 ~ 40%):

- (1)理解刚体平动和定轴转动的特征。熟练求解定轴转动刚体的角速度和角加速度,求解定轴转动刚体上各点的速度和加速度。
- (2)掌握点的合成运动中的基本概念。熟练应用点的速度和加速度合成定理求解平面问题中的运动学问题。
- (3)理解刚体平面运动的特征。熟练应用基点法、瞬心法和速度投影法求平面机构上各点的速度。能熟练应用基点法求平面机构上各点的加速度。

动力学 (40 ~ 60%):

- (1)熟练计算力的功和质点、质点系、平面运动刚体的动能。应用质点和质点系的动能定理 求解有关的动力学问题。
- (2)能计算动力学中各基本物理量。熟练运用动量定理、质心运动定理、刚体绕定轴转动等动力学普遍定理综合求解动力学问题。
- (3)掌握刚体平动及对称刚体作定轴转动和平面运动时惯性力系的简化结果。应用达朗伯原理(动静法)求解动力学问题。
- (4)应用虚位移原理求解问题。
- (5)计算单自由度系统的振动问题
- 三、 试券类型及比例

综合计算题

四、 考试形式及时间

考试形式为笔试。考试时间为三小时。

802 材料力学

### 一、考试的总体要求

掌握研究杆件内力、应力、变形分布规律的基本原理和方法;掌握研究杆件强度、刚度和稳定性问题的理论和和计算方法。概念清楚,具有熟练的分析和计算能力,能将工程实际构件抽象为力学模型,运用材料力学知识分析解决简单的工程实际问题。

# 二、考试的内容及比例

- 1. 基本部分: (占试题 85%)
- 1) 对材料力学的基本概念和基本分析方法有明确认识。
- 2) 能熟练地分析杆件在各种基本变形下的内力、计算其应力和变形,进行强度和刚度计算。
- 3) 对应力状态理论和广义虎克定律有明确的认识和熟练的计算能力;
- 4) 掌握强度理论,并能将其应用于组合变形构件的强度计算。
- 5) 熟练掌握简单静不定问题的求解方法。
- 6) 对能量法的有关基本原理有明确认识,并熟练地掌握一种计算位移的能量方法。
- 7) 会计算轴向受压杆件的临界载荷与临界应力,并进行稳定性校核。
- 8) 掌握常用材料的基本力学性能及其初步测试方法。
- 9) 对于电测实验应力分析的基本原理和方法有初步认识。
- 2. 提高部分: (占试题 15%)
- 1) 薄壁截面梁的弯曲切应力,弯曲中心的概念等。
- 2) 各种变形下杆件的应变能计算及用能量方法计算杆件变形, 求解简单超静定问题
- 3) 了解动载荷的概念,会计算构件受冲击时的应力和变形;了解交变应力下材料的疲劳破坏的概念、疲劳极限和影响构件疲劳极限的主要因素。

# 三、试卷题型及比例

综合计算分析题为主,选择、填空题不超过总分的10%

# 四、考试形式及时间

笔试,三个小时。

### 一、考试的总体要求

1. 机械原理部分

主要考查学生对机构学与机器动力学的基本概念、基本理论和常用机构的分析与设计方法的掌握,以及相关的分析、解决问题的能力。

2. 机械设计部分

主要考查学生对通用机械零件设计计算的基本理论和基本方法的掌握,以及运用基本理论和方法解决一般机械设计问题的能力。

- 二、考试的内容及比例
- 1. 机械原理部分(占50%)

机构的组成和结构分析,平面机构的运动分析,平面机构的力分析,平面连杆机构及其设计, 凸轮机构及其设计,齿轮机构及其设计,轮系及其设计,其他常用机构(间歇运动机构、组 合机构、螺旋机构),机器的运转和调速,机械的平衡,机械的效率。

2. 机械设计部分(占50%)

机械零件工作能力及计算准则,机械零件的疲劳强度计算,摩擦、磨损及润滑,连接(螺纹、键、花键、过盈),机械传动(带、链、齿轮、蜗杆),轴,轴承(滑动、滚动),联轴器和离合器,弹簧。

- 三、试卷类型及比例
- 1. 机械原理部分(占50%)
- (1) 填空题、选择题,约占10%~20%。
- (2) 计算题、图解分析题,约占80%~90%。
- 2. 机械设计部分(占50%)
- (1) 填空题、选择题,约占20%~30%。
- (2) 分析题、简答题,约占10%~15%。
- (3) 计算题、结构设计题,约占55%~70%。

四、考试形式及时间

考试形式为笔试,考试时间为3小时(满分150分)。

804 内燃机原理

# 一、 考试的总体要求

掌握内燃机结构原理、工作过程、燃烧、排放、性能等基本概念,了解汽油机和柴油机的结构参数(包括供油系统、点火系统、进气系统、燃烧室、增压系统等)对发动机动力性、经济性和有害排放物的影响,会应用这些基本知识分析内燃机性能、燃烧、排放的变化。 二、 考试的内容及比例:

### 1. 内容:

周龙保主编《内燃机学》第1~8章。

2. 应考范围、考试要求及各部分比例。

重点考查学生基本概念,如汽油机及柴油机的混合气形成、燃烧及排放特性。掌握发动机动力性和经济性指标,了解负荷特性、速度特性、万有特性、调速特性。简要考查柴油机增压概念、增压后发动机性能和排放的变化,以及废气能量利用情况。增压部分比例占 10%左右,其它占 90%左右

三、 试卷题型及比例

考卷以简答题、论述题为主,占 80%左右。部分名词解释、选择题、解析题和计算题占 20% 左右。

四、考试形式及时间

考试形式均为笔试。考试时间为三小时(满分150)。

805 工程热力学

### 一、考试的总体要求:

要求考生对工程热力学的基础理论、基本概念、热力学定律、主要的热力系统和正、逆循环特征,热力过程和正、逆循环的计算方法有较全面的了解;要求考生对工程热力学的研究动向有所了解。

### 二、考试的内容:

- 1、 熟练掌握热力系统,状态与状态参数,功与热量、准静态过程、可逆过程,稳定流动,膨胀功、技术功,流动功和轴功,能量的数量和品质,实际过程与可用能的耗散。
- 2、 熟练掌握理想气体状态方程和理想混合气体的热力学性质及其相应的数学计算式,并能够进行一般的气体性质的计算。
- 3、 熟练掌握闭口系统能量方程,开口系统能量方程,稳定流动能量方程,焓的定义及其物理意义。热力学第一定律应用于热力学过程和热力循环,达到能够利用热力学第一定律正确地分析各种热力学过程及其热力学系统的形式,同时正确地计算出理想气体的各种热力学系统和循环的热功转换量,各种热力过程的终点状态参数。
- 4、 熟练运用多变过程的 p-v 和 T-s 图形,能够正确地判断典型的多变热力过程特征,并运用其特征方程完成相应的热力过程计算;了解压气机和多级压缩的工作原理,尤其是活塞式压气机的余隙容积的影响效果。
- 5、 熟练掌握热力学第二定律的经典表述、卡诺循环及定理和熵增原理,达到能够利用热力 学第二定律及其定理正确地判断热力学系统和过程的进行方向和各种可逆循环的热效率;根 据熵增原理,正确地计算出各种热力学系统和过程的熵增、熵流和熵产,并分析能量的可用 性和不可用性。
- 6、 熟练掌握水蒸汽的发生过程; 水蒸气的基本热力过程, 水蒸汽图表结构和应用, 水蒸汽的状态及其状态参数的确定; 湿空气性质及其参数计算, 湿空气的焓湿图, 并利用焓湿图分析和计算各种湿空气的基本热力过程;
- 7、 熟练掌握动力循环的基本原理;包括朗肯循环、回热循环、再热循环的特征和效果;了解热力机械和热力装置的分类,压气机、内燃机、燃气轮机、蒸汽动力装置理想循环的分析;熟练掌握致冷循环的基本原理,重点掌握蒸汽压缩致冷与热泵循环的基本过程、相关图形、致冷致热系数的计算及其影响因素等,了解致冷剂的基本热力学特性及其对环境的影响效果。

### 三、卷题型及比例:

分析计算题 30%。

1. 名词解释、填空、是非、选择题等 约 20%

2. 简答(包括论证、画图分析)题 约 20%

3. 分析题与论述题 约 20%,

4. 计算题 约 40%

四、考试形式及时间:

采用闭卷笔试,考试时间为三小时(满分150分)。

# 五、主要参考教材

- 1、工程热力学(第四版),中国建筑工业出版社,廉乐明, 1999年
- 2 、工程热力学 (第三版), 高教出版社, 曾丹苓, 2002 年

806 测控技术基础

#### 一、考试的总体要求

掌握测控技术的基础知识和基本理论,并能合理运用解决实际问题。

## 二、考试的内容及比例

考试内容分为 A、B 两个模块,考生可任选其中一个模块。A 模块为精密测量基础理论与技术,B 模块为传感技术与测控电路。

(一) A 模块:精密测量基础理论与技术

### 1. 测量系统

主要内容:测量的基本概念,测量系统的组成,测量系统性能指标。

基本要求:测量、测试、计量的基本概念,测量标准,量值传递与溯源体系;测量系统的组成及各部分功能;理想频率响应特性及不失真测试条件;测量系统(仪器)主要性能指标。

#### 2. 测量误差

主要内容:测量误差的基本概念。

基本要求:误差的定义及表示法,分类和特征;准确度、正确度和精密度等基本计量术语的概念。

#### 3. 测量不确定度

主要内容:测量不确定度的概念,测量不确定度的评定,测量不确定度的合成。

基本要求:测量不确定度的基本术语,不确定度的来源;标准不确定度的两类评定、合成标准不确定度和扩展不确定度的求取方法;不确定度报告

### 4. 长度量测量

主要内容:长度测量的标准量和标准环境,阿贝原则,长度尺寸的测量,形位误差的测量,表面粗糙度的测量。

基本要求:长度测量的标准量和标准环境;阿贝原则;长度的直接测量和间接测量、绝对测量和相对测量方法及各种常用测量仪器;形位误差测量的基本概念、测量方法和步骤;直线度误差的概念和评定方法,常用测量方法和仪器;表面粗糙度评定基准和参数,常用测量仪器。

### 5. 角度量测量

主要内容:角度的自然基准、实物基准和圆周封闭原则,角度尺寸的测量,圆分度误差的测量。

基本要求:角度的自然基准、实物基准和圆周封闭原则;角度的直接测量和间接测量方法及常用测量仪器;圆分度误差的评定指标;圆分度误差的绝对测量和相对测量方法。

### 6. 速度、转速和加速度测量

主要内容: 速度、转速和加速度测量的基本方法。

基本要求: 速度的测量方法、皮托管、多普勒测速原理、陀螺仪基本特性及角速度测量原理; 频闪式转速测量原理及方法; 加速度测量原理和方法。

### 7. 力、力矩和压力测量

主要内容:力、力矩和压力测量的基本方法。

基本要求:力的测量方法和常用测量装置;转矩的测量方法和常用测量装置;压力和真空的测量方法和常用测量装置。

# 8. 机械振动的测试

主要内容: 机械振动的概念、类型, 振动量的测量方法。

基本要求: 机械振动的概念、类型及其表征参数; 固有频率和阻尼比的常用测量方法。

## 9. 温度的测量

主要内容: 温标的概念及各种类型温度计的工作原理。

基本要求:温标的定义;热电偶温度计的工作原理、基本定律和参比端处理方法;热辐射基本定律及热辐射温度计。

#### 10. 流量的测量

主要内容:流量的基本概念及各种类型流量计的工作原理和特点。

基本要求:流量的定义;差压式管道流量计;测速式流量计;振动式流量计。

#### 参考材料:

[1] 孙长库, 胡晓东, 精密测量理论与技术基础[M]. 北京: 机械工业出版社, 2015.

### (二)B 模块: 测控电路

# 1. 绪论

主要内容:测控电路的功用,对测控电路的主要要求与特点,测控电路的输入输出信号,测控电路的类型与组成。

基本要求:了解测控电路的功用,测控电路的主要要求与特点,测控电路的输入输出信号及测控电路的类型与组成。

### 2. 信号放大电路

主要内容:运算放大器的误差及其补偿,噪声的基础知识,典型测量放大电路,隔离放大电路。

基本要求:掌握实际运算放大器的误差及其补偿方法,包括输入失调电压,失调电流,共模抑制比等的影响;掌握典型测量放大电路的设计及计算;了解运算放大器噪声的种类与处理方法,了解隔离放大器的基本工作原理。

### 3.信号调制与解调电路

主要内容: 调幅式测量电路, 调频式测量电路, 调相式测量电路, 脉冲调制式测量电路。

基本要求: 掌握调幅式测量电路的基本原理和方法,包括包络检波和相敏检波的电路的原理及设计方法; 了解调频、调相的方法。

### 4. 信号分离电路

主要内容: 滤波器基本知识, RC 滤波电路, 集成有源滤波器

基本要求: 了解滤波器种类,掌握各种滤波器的设计方法,重点掌握二阶滤波器的分析与设计。

### 5.信号运算电路

主要内容:比例运算放大电路,加/减法运算电路,对数、指数和乘、除运算电路,常用特征值运算电路,函数型运算电路,微分积分运算电路,过程调节器电路。

基本要求: 熟练掌握同相、反相和差分比例放大电路设计方法。掌握加减运算电路, 微分、积分电路原理及设计。了解指数、对数电路, 对数电路, 常用特征值运算电路和 PID 电路的工作原理。

### 6.信号转换电路

主要内容:模拟开关,采样保持电路,电压比较器电路,电压频率转换电路,电压电流转换电路,模拟数字转换电路。

基本要求: 掌握几种常用模拟开关原理,了解采样保持电路原理,掌握电平比较电路、滞回比较电路、窗口比较电路原理及应用。掌握 V/f 和 f/V 转换电路原理,运放构成的 V/I 转换器原理,掌握 D/A 和 A/D 转换的基本原理和方法。

### 7.信号细分与辩向电路

主要内容: 直传式细分电路, 平衡补偿式细分电路。

基本要求: 掌握单稳四细分辩向电路,电阻链分相细分电路原理及设计方法以及计算机细分的原理与方法。掌握平衡补偿式细分中的相位跟踪细分,了解幅值跟踪细分,脉冲调宽型跟踪细分以及频率跟踪细分的原理与方法。

### 8.连续信号控制电路

主要内容: 脉宽调制控制电路, 导电角控制逆变器, 变频控制电路。

基本要求: 掌握脉宽调制控制电路的工作原理与控制电路; 了解导电角逆变器的基本原理; 了解变频控制的基本原理。

#### 9.逻辑与数字控制电路

主要内容:二值逻辑控制与驱动电路,异步与步进电动机驱动电路。

基本要求: 掌握二值逻辑控制与驱动电路的基本原理和设计方法。了解异步与步进电动机驱动电路的原理。

### 10. 测控电路设计实例

主要内容: 动力调谐陀螺仪再平衡回路,系统建模,电路设计

基本要求: 了解测控系统基于电路的实现方法。

#### 参考书材料:

【1】 张国雄主编,李醒飞副主编 . 测控电路. 机械工业出版社. 2011年4月

807 工程光学

### 一、 考试的总体要求

本门课程的考试旨在考核学生有关应用光学和物理光学方面的基本概念、基本理论和实际解决光学问题的能力。

考生应独立完成考试内容,在回答试卷问题时,要求概念准确,逻辑清楚,必要的解题步骤不能省略,光路图应清晰正确。

# 二、 考试的内容及比例:

考试内容包括应用光学和物理光学两部分。

"应用光学"应掌握的重点知识包括:几何光学的基本理论和成像概念、理想光学系统理论、光学系统中的光束限制、平面和平面系统对成像的影响、像差的基本概念和典型光学系统的性质、成像关系及光束限制等。具体知识点如下:

- 1、掌握几何光学基本定律与成像基本概念,包括:四大基本定律及全反射的内容与现象解释;完善成像条件的概念和相关表述;几何光学符号规则以及单个折射球面、反射球面的成像公式、放大率公式等。
- 2、掌握理想光学系统的基本理论和典型应用,包括:基点、基面的主要类型及其特点; 图解法求像的方法;解析法求像方法(牛顿公式、高斯公式);理想光学系统三个放大率的 定义、计算公式及物理意义;理想光学系统两焦距之间的关系;正切计算法以及几种典型组 合光组的结构特点、成像关系等。
- 3、掌握平面系统的主要种类及应用,包括:平面镜的成像特点及光学杠杆原理和应用; 反射棱镜的种类、基本用途及成像方向判别;光楔的偏向角公式及其应用等。
- 4、掌握典型光学系统的光束限制分析,包括:孔径光阑、入瞳、出瞳、孔径角的定义及它们的关系;视场光阑、入窗、出窗、视场角的定义及它们的关系;渐晕、渐晕光阑、渐晕系数的定义;物方远心光路的工作原理;光瞳衔接原则及其作用;场镜的定义、作用和成像关系等。
- 5、了解像差基本概念,包括:像差的定义、种类和消像差的基本原则;7 种几何像差的定义、影响因素、性质和消像差方法等。
- 6、掌握几种典型光学系统的基本原理和特点,包括:正常眼、近视眼和远视眼的定义和特征,校正非正常眼的方法;视觉放大率的概念、表达式及其意义;显微镜系统的结构特点、成像特点、光束限制特点及主要参数的计算公式;临界照明和坷拉照明系统的组成、优缺点;望远系统的结构特点、成像特点、光束限制特点及主要参数的计算公式;摄影系统的结构特点、成像特点、光束限制特点及主要参数的计算公式;投影系统的概念、计算公式以及其照明系统的衔接条件等。

"物理光学"应掌握的重点知识包括:光的电磁理论基础、光的干涉和干涉系统、光的 衍射、光的偏振和晶体光学基础等。具体知识点如下:

- 1、掌握电磁波的平面波解,包括:平面波、简谐波解的形式和意义,物理量的关系,电磁波的性质等;掌握波的叠加原理、计算方法和4种情况下两列波的叠加结果、性质分析。
  - 2、掌握干涉现象的定义和形成干涉的条件;掌握杨氏双缝干涉性质、装置、公式、条

纹特点及其现象的应用;了解条纹可见度的定义、影响因素及其相关概念(包括临界宽度和允许宽度、空间相干性和时间相干性、相干长度和相干时间等);掌握平行平板的双光束干涉定域面、干涉装置、干涉条纹的性质和计算公式;掌握典型双光束干涉系统(斐索、迈克尔逊)及其应用;掌握平行平板的多光束干涉条件、装置、干涉条纹性质与计算。

- 3、掌握衍射现象定义、衍射系统和分类;掌握矩孔夫琅和费衍射的光强分布公式和衍射条纹性质分析;掌握单缝夫琅和费衍射的光强分布公式和衍射条纹性质分析;了解圆孔夫琅和费衍射的光强分布公式和衍射条纹性质分析,成像系统的分辨本领;掌握多缝夫琅和费衍射的光强分布公式和衍射条纹性质分析;掌握衍射光栅(平面光栅)方程、特性;了解闪耀光栅、阶梯光栅的方程、特性。
- 4、掌握自然光、偏振光和部分偏振光的定义、特点,偏振度的定义,能够产生偏振光的方法;掌握布儒斯特定律和马吕斯定律;掌握晶体光学的基本概念(光轴、主平面、主截面、单轴正负晶体),会用惠更斯原理分析晶体的双折射现象;掌握各种起偏器、分束器和波片(1/4 波片、1/2 波片和全波片)的结构、作用和工作原理;了解偏振光的矩阵表示,会用矩阵方法表示偏振光和配置器件,并求出射光的矩阵;掌握偏振光的变换和测定方法(辨别偏振光、产生要求的偏振光);掌握偏振光的干涉原理、装置、公式、光强分布特性。

考试内容中基本理论、基本知识和基本技能性题目占 80%左右,综合和实际应用题目 (有一定难度的题目) 不超过 20%。

#### 三、 试卷题型及比例

试题类型包括:填空题、是非判断题、多重选择题、简答题、作图题、计算题等,每年的试题类型从中选几类,其中计算题所占比例一般为 40-50%,其他各类题型一般占60-50%。试题反映本课程的主要内容和要求,适当均匀分布在上述内容中。

### 四、 考试形式及时间

考试形式为笔试。考试时间为3小时。

#### 五、参考文献

- (1)《工程光学》第3版, 郁道银, 机械工业出版社, 2011
- (2)《工程光学基础教程》, 郁道银, 机械工业出版社, 2007
- (3)《工程光学复习指导与习题解答(第2版)》,蔡怀宇,机械工业出版社,2016

#### 一、考试的总体要求

电磁场与电磁波是电子信息类专业的一门重要技术基础课。因此要求考生必须较好地了解宏观电磁场分布及电磁波辐射、传播的基本规律和特性,掌握工程应用中电磁场与电磁波问题的基本分析方法和计算方法。理解和掌握正旋电磁波的复数表示法,能用之进行计算。了解波动方程,掌握平面电磁波在理想介质和导电媒质中传播的规律。能用场的观点来对实际电磁与电磁波现象进行分析和判断,并能根据要求进行基本的电磁问题的设计。主要考核考生对基本知识和基本技能的掌握程度,了解考生在电磁场与电磁波方面分析问题和解决问题的能力。

## 二、考试的内容及比例

- 1、电磁场与电磁波的基本概念与基本定律、定理。(占 10%)
- 2、麦克斯韦方程组各种表现形式及引出的波动方程、达朗贝尔方程、坡印廷定理、亥姆霍兹方程等公式推导证明。(占15%)
- 3、静电场、恒定电场基本方程和边界条件应用。对电场、电位、极化强度、电容、电阻、电场能量、电场力等参量进行计算。(占 20%)
- 4、恒定磁场基本方程、边界条件,以及磁路欧姆定律应用。对磁场矢量磁位、磁化强度、 电感、磁场能量、磁场力等参量进行计算。(占 20%)
- 5、静电场直角坐标分离变量法,镜像法。(占10%)
- 6、正弦平面电磁波在自由空间传输情况下,电磁波、坡印廷矢量等参量计算。电磁波对平面分界面的垂直入射、斜入射情况下的透射系数、反射系数和电磁波参量计算。波的极化特性判断。全反射、全透射定义与应用。(占 25%)

### 三、试卷类型及比例

- 1、基本知识;填空、选择题、简答题(占40%);
- 2、基本技能: 计算、作图,设计和证明(占60%);
- 3、课程内容大致比例:静态场占60%,动态场占40%。

### 四、考试形式及时间

考试形式为笔试,考试时间为三小时(满分为150分)。

### 五、参考书目

- 1、谢处方等编著,电磁场与电磁波(第三版),高等教育出版社,1999年;
- 2、谢处方等编著, 电磁场与电磁波 (第四版), 高等教育出版社, 2006年。

#### 一、考试的总体要求

旨在考查考生是否具备光电子学专业的物理学基础和主要的专业课知识。其中物理学基础的 考试内容为《物理光学》课程;专业课为《激光原理》课程。主要考查考生对基本概念的理 解是否正确,是否具备应用物理学原理去灵活解决具体问题的能力,能否简洁、准确表达解 决问题的过程和结果。

### 二、考试的内容及比例

与物理学基础相关的考试内容涉及《物理光学》课程;与光电子技术相关的考试内容涉及《激光原理》课程。考试内容以大题为单元,共10道大题,任选5道大题做答,多选总分得零。每道大题 30分。其中《物理光学》5道大题,《激光原理》5道大题。每门课程的详细考试大纲见附录。每道大题可以是若干小题的集合,或若干关联的小问题。主要考查考生对基本概念的理解是否正确,是否具有应用原理灵活解决具体问题的能力,能否简洁、准确表达解题过程和结果。

#### 三、考试的题型及比例

共 10 道大题,任选 5 道大题做答,多选总分得零。每道大题可以是若干小题的集合,或若干关联的小问题。题型包括基本概念考查题,分析论证推导题,数值估算题等。原则上概念题比例较大,约占 70~80%。

#### 四、考试形式及时间

考试形式为笔试,考试时间为3小时(或以研究生院公布的为准)。

### 附录:

《激光原理》部分

- 1. 激光的基本原理(《激光原理》,(第6版),周炳琨编著,国防工业出版社,第一章) 光的受激辐射基本概念;激光的特性。
- 2. 光学谐振腔与高斯光束(《激光原理》,(第6版),周炳琨编著,国防工业出版社,第二章)
- (1)光腔理论的一般问题:光学谐振腔与模(纵模与横模)的基本概念;共轴球面腔的稳定性条件;光腔的损耗。
  - (2)稳定球面腔:对称共焦腔的自再现模及其行波场及计算。
- (3)高斯光束: 高斯光束的基本性质; 高斯光束 q 参数的变换规律(ABCD 法则); 高斯光束的聚焦与准直; 高斯光束的自再现变换与稳定球面腔; 高斯光束模式的匹配。
- 3. 电磁场和物质的共振相互作用(《激光原理》,(第6版),周炳琨编著,国防工业出版社, 第四章)
- (1)电磁场和物质相互作用:光谱线加宽和线型函数;自然加宽和碰撞加宽(均匀加宽); 多普勒加宽(非均匀加宽);激光器的速率方程。
- (2) 连续激光器的增益与工作特性:增益系数与小信号增益;均匀加宽、非均匀加宽及综合加宽工作物质的增益饱和特性;连续激光器的工作特性;单模激光器的线宽极限;激光器的频率牵引。
- 4. 激光振荡特性(《激光原理》,(第6版),周炳琨编著,国防工业出版社,第五章)
  - (1) 激光器的振荡阈值和输出功率和能量。
  - (2) 弛豫振荡、线宽极限、频率牵引。
- 5. 激光器特性的控制与改善(《激光原理》,(第6版),周炳琨编著,国防工业出版社,第

### 七章)

- (1) 选模和稳频。
- (2) 调 Q 与锁模。

### 《物理光学》部分

《物理光学》,(第三版),梁铨廷,电子工业出版社

- 第一章 光的电磁理论
- 1.1 光的电磁波性质
- 1.2 平面电磁波
- 1.3 球面波
- 1.5 电磁场的边值关系
- 1.6 光在两介质分界面上的反射和折射
- 1.7 全反射

要求:掌握麦克斯韦方程组与物质方程;平面波、球面波的表达式;玻应廷矢量;光强;折反射定律;菲涅尔公式在几种特殊角度下的表达式;布儒斯特角。

### 第二章 光波的叠加和分析

- 2.1 两个频率相同、振动方向相同的单色光波的叠加
- 2.2 驻波
- 2.3 两个频率相同、振动方向互相垂直的光波的叠加
- 2.4 不同频率的两个单色光波的叠加

#### 要求:

掌握光的叠加原理,掌握同频率、同振动方向的两列光波的叠加;

理解频率相同、振动方向互相垂直、有固定位相差关系的两光波的叠加,掌握光的五种偏振态的特性;

领会群速度、相速度的概念,了解光程差、位相差的概念和转换关系。

### 第三章 光的干涉和干涉仪

- 3.1 实际光波的干涉及实现方法
- 3.2 杨氏干涉实验
- 3.3 分波前干涉的其他实验装置
- 3.4 条纹的对比度
- 3.5 相干性理论
- 3.6 平行平板产生的干涉
- 3.7 楔形平板产生的干涉
- 3.8 用牛顿环测量透镜的曲率半径
- 3.10 迈克耳孙干涉仪

### 要求:

理解获得相干光的方法,掌握条纹可见度的定义,以及空间相干性、时间相干性和光源振幅 比对条纹可见度的影响;

掌握杨氏干涉的基本原理,干涉条件,熟悉光强分布的计算;

掌握等倾干涉和等厚干涉的条纹特征、光强分布计算;掌握迈克尔逊干涉仪、牛顿环的基本 光路、工作原理,及干涉条纹的特性和计算。 第四章 多光束干涉与光学薄膜

- 4.1 平行平板的多光束干涉
- 4.2 法布里一珀罗干涉仪
- 4.3 多光束干涉原理在薄膜理论中的应用

#### 要求:

掌握平行平板多光束干涉的光强分布、干涉规律及应用;

掌握迈克尔逊干涉仪、F-P干涉仪的基本光路、工作原理及其应用。

#### 第五章 光的衍射

- 5.1 惠更斯-菲涅尔原理
- 5.3 菲涅尔衍射和夫朗和费衍射
- 5.4 矩孔和单缝的夫朗和费衍射
- 5.5 圆孔的夫朗和费衍射
- 5.6 光学成像系统的衍射和分辨本领
- 5.8 多缝的夫朗和费衍射
- 5.9 衍射光栅

#### 要求:

了解标量衍射基本理论,掌握菲涅尔衍射和夫朗和费衍射的近似条件;

掌握矩孔、单缝和多缝夫朗和费衍射的光强分布规律; 掌握光栅的基本原理及相关计算公式:

掌握圆孔夫朗和费衍射的光强分布规律,理解光学仪器的分辨本领及有关计算。

第七章 光的偏振与晶体光学基础

- 7.1 偏振光和自然光
- 7.2 晶体的双折射
- 7.3 双折射的电磁理论
- 7.4 晶体光学性质的图形表示
- 7.5 光波在晶体表面上的反射和折射
- 7.6 晶体光学器件
- 7.7 偏振光和偏振器件的矩阵表示
- 7.8 偏振光的干涉

### 要求:

掌握偏振光和自然光的差别,熟悉获得偏振光和检验偏振光的方法:

熟悉双折射的电磁理论、单轴晶体和双轴晶体的光学性质及其图形表示,光波在晶体中传播的几何法描述;

平面光波在各向异性媒质界面上的反射和折射;

偏振器和补偿器的原理和应用:

偏振光的琼斯矢量和偏振器件的琼斯矩阵表示法;

偏振光的干涉原理及会聚光的偏光干涉花样特点。

#### 参考书:

《物理光学》,(第三版),梁铨廷,电子工业出版社

《物理光学学习指导与题解》, 刘翠红编著, 电子工业出版社

《物理光学与应用光学》,(第二版),石顺祥编著,电子科技大学出版社

### 一、考试的总体要求

掌握生物医学工程的基础知识和基本理论,并能合理运用解决实际问题。

二、考试的内容及比例

考试内容分为 A、B、C、D 四个模块,考生可任选其中一个模块。A 模块为医学成像基础,B 模块为医用传感基础,C 模块为生物医学信号处理基础,D 模块为光学与光电基础。

### (一) A 模块: 医学成像基础

#### 1. 传统 X 射线成像

- (1) X 射线物理基础 (X 线产生条件及性质; 韧致辐射、特征辐射与其对应射线谱; X 射线管的技术参数; X 线与物质的相互作用; X 线强度与硬度; X 线的硬化; X 线透射与衰减)
- (2) X 射线透视成像(传统 X 射线成像原理、系统及方式;影响 X 射线成像质量的主要因素;典型 H-D 曲线形态,其横纵坐标及各参数含义;原发/客观/主观对比度概念,定义公式,相关性推导;传统 X 射线成像缺点)
  - (3) X 线影像质量评价(像素、分辨率、对比度的概念)
  - (4) 经典 X 射线断层成像(X 线断层成像的基本原理)
- (5) 数字减影 (数字剪影原理及方法; 时序减影、能量减影、混和剪影原理; K 吸收带及 K 吸收边缘法概念)
  - (6) 数字化 X 线摄影(CR 成像原理、 DR 成像原理、二者区别与成像优点)

### 2. 计算机断层成像

- (1) X-CT 定义、成像参数和扫描方式(CT 成像概念;像素与体元概念;衰减系数与CT 值定义;CT 与胶片分辨率差异及原因;窗口技术与窗宽、窗位定义;第一代到第五代CT 特点)
- (2) CT 图像重建原理和方法(投影概念与实质;正弦图概念及公式; CT 图象重建方法分类及典型代表算法比较;直接反投影重建法原理、计算及"灰雾"成因)
- (3) CT 图像显示和质量评价方法(CT 图像重建显示的代表性图像处理技术; CT 图像特点,与 X 射线透视影像的区别; CT 图像质量参数、三种评价参数公式及表征)
  - (4) CT 装置结构(CT 装置组成; CT 机房要求)

### 3. 放射性核素成像

- (1) 放射性同位素及射线检测物理基础(放射性同位素概念、性质、衰变规律、在医学中的应用; 粒子探测器各部分组成、定义、分类、特性等; 放射线检测前置放大器的作用)
- (2) 放射性同位素扫描与 $\gamma$  照相机(放射性核素成像概念;放射性同位素扫描原理、结构; $\gamma$  照相机结构、工作原理;)
  - (3) ECT 成像(ECT 成像原理与分类; SPECT 分类、原理、组成、特点; PET 原理,

符合湮灭测量与飞行时间差作用、探测器类型、成像过程; PET 成像优缺点及主要应用) 4. 超声波成像

- (1) 超声波物理性质(超声波产生及各种物理参数定义、公式;超声波传播和衰减特性;超声辐射声场特性;超声对生物媒质作用)
- (2) 医用超声换能器(超声辐射声场指向性、近场与远场特性;超声换能器的压电效应原理;超声换能器结构)
- (3)超声诊断仪原理(超声波成像基本原理及优势;超声脉冲反射法/脉冲回波法原理;脉冲工作频率(波长)选取考虑因素,与脉冲重复频率间的区别;超声相控阵扫描原理;超声成像基本类型;超声成像回波信号 e(t)公式及 TGC 原理; A 超、B 超、M 超在显示方面的区别)
- (4) 超声 Doppler 诊断技术(Doppler 效应原理及公式;超声 Doppler 血流速度测量主要方法;连续波 Doppler 速度测量基本原理;脉冲波 Doppler 速度测量基本原理及特点;超声 Doppler 测量取得血流方向信息;彩色血流映射主要技术思路;运动目标显示技术和相位检测基本知识)

# 5. 磁共振成像

- (1)核磁共振现象(NMR)及其物理基础(原子核磁矩、核磁子、自旋量子数定义; 核磁矩与自旋角动量关系;拉莫尔进动概念与进动频率公式;力学动量矩原理;核磁矩的能级分布与核磁共振现象原理)
- (2) 核磁共振(NMR)信号产生与检测(宏观磁化原理;引入射频 RF 场原因;自由感应衰减信号 FID 概念;驰豫时间检测方法)
  - (3) NMR 成像方法(磁共振成像的基本原理; MRI 图象重建方法)
  - (4) MRI 装置(磁体系统; NMR 波谱仪; 图像重建和显示系统)
  - (5) MRI 应用(临床诊断应用范围; MRI 与其它成像方法比较)

# 参考材料:

- [1] 高上凯著, 医学成像技术, 清华大学出版社, 2001年2月
- (二) B 模块: 为医用传感基础
- 1. 医用传感器基本概念
  - (1) 医用传感器的定义
  - (2) 医用传感器的分类与组成
  - (3) 人体信息检测的特殊性
  - (4) 医用传感器的发展方向
- 2. 医用传感器的基本特性
  - (1) 传感器信息模型的建立
  - (2) 传感器的静态特性
  - (3) 传感器的动态特性

- 3. 常用医用传感器工作原理
  - (1) 电阻应变式传感器
- (2) 电容式传感器(电容式压力传感器、直流极化型电容传感器、测量电路及分布电容消除方法)
  - (3) 变磁阻式传感器(电杆传感器差动变压器式传感器、变磁阻式传感器的应用)
  - (4) 电动式传感器(附有力学系统的电动式传感器、电磁血流量传感器)
- (5) 压电式传感器和超声换能器(换能器的结构与超声场、压电式传感器、医用压电超声换能器、医学超声仪器)
- (6) 热敏式传感器(金属热电偶传感器、热敏电阻温度传感器、PN 结二极管和集成电路温度传感器、热释电传感器)
- (7) 光敏式传感器(光电倍增管、光电导元件、光生伏特元件、光敏管、各种光敏传感器的性能比较)
- (8) 电化学与生物传感器测量基础(参比电极、离子选择性电极及其应用、气敏电极和气体扩散电极)
- 4. 检测生物电及电刺激生物体用电极
  - (1) 极化现象及对生物电检测的影响、不极化电极、电极的阻抗
  - (2) 电极的运动伪差及市电干扰
  - (3) 生物电检测类宏电极的类型
  - (4) 微电极
- 5. 生物传感器及在医学中的应用
  - (1) 生物传感器原理及典型应用
  - (2) 酶电极原理及典型应用
  - (3) 微生物传感器原理及典型应用
  - (4) 免疫传感器原理及典型应用
  - (5) 细胞器及组织传感器典型应用
  - (6) 多功能及微型生物片传感器典型应用

#### 参考材料:

- [1] 《医用传感器与人体信息检测》,作者: 王明时, 天津科学技术出版社
- (三) C 模块: 为生物医学信号处理基础
- 1. 生物医学信号概论
  - (1) 生物医学信号处理目的
  - (2) 典型的生物医学信号及其特点
  - (3) 生物医学信号的数学表达(信号概率描述、数字特征以及信号平稳性与遍历性)
  - (4) 生物医学信号通过线性系统
- 2. 数字信号处理的基本概念
  - (1) 离散时间信号(典型离散信号、离散信号的运算)
  - (2) 离散时间系统(离散时间系统的基本概念、输入输出关系
  - (3) Z 变换(Z 变换定义、Z 变换收敛域、Z 变换的性质
  - (4) 离散时间系统的转移函数、频率响应、零极点分析
- 3. 生物医学信号的数字滤波方法
  - (1) 奈奎斯特采样定律(掌握理想采样、频谱混叠、频谱泄露、栅栏效应等概念以及

数字频率、归一化频率、频谱分辨率的计算)

- (2) 线性卷积与循环卷积(图表法、公式法计算卷积)
- (3) IIR 数字滤波器(掌握基本概念以及给定特性的滤波器设计)
- (4) FIR 数字滤波器(掌握基本概念以及给定特性的滤波器设计)
- (5) 匹配滤波器(基本原理和构成、神经传导速度测量用信号模型、非白噪声背景下的匹配滤波器、信号波形未知时的匹配滤波器构造方法)
  - 4. 生物医学信号的现代滤波方法
  - (1) 信号功率谱(定义、非参数估计以及基于 DFT 的功率谱计算)
  - (2) 维纳滤波(原理及公式推倒、滤波器优化、时间离散的维纳滤波器设计)
  - (3) 参数模型(信号的成形滤波器、AR 模型阶次估计、ARMA 模型参数估计)
- (4)自适应滤波及其应用(自适应的概念和原理、LMS 自适应滤波器、自适应消噪声、自适应谱线增强和窄带信号分离、自适应系统辨识)

#### 参考材料:

- [1]《数字信号处理导论》,作者: 胡广书,清华大学出版社 (2006-07)
- [2]《生物医学信号处理》,作者:杨福生高上凯编著,高等教育出版社(1998-05)

### (四) D 模块: 为光学与光电基础

- 1. 几何光学基本定律与成像概念
- (1) 几何光学基本定律: 1) 光的直线传播定律 2) 光的独立传播定律 3) 反射定律和折射 定律(全反射及其应用) 4) 费马原理(最短光程原理)
- (2) 完善成像条件的概念和相关表述
- (3)单个折射面的成像公式,包括垂轴放大率、轴向放大率、角放大率 γ、拉赫不变量等公式。
- (4) 球面反射镜成像公式
- 2. 理想光学系统
- (1) 无限远的轴上(外)物点的共轭像点及光线、无限远的轴上(外)像点的对应物点及 光线的性质,物(像)方焦距的计算公式
- (2) 物方主平面与像方主平面的性质,光学系统的节点及性质
- (3) 图解法求像的方法
- (4)解析法求像方法(牛顿公式、高斯公式)
- (5) 理想光学系统的放大率概念及公式
- 3. 光辐射探测器的理论基础
- (1) 光电发射效应(外光电效应)
- (2) 半导体的光电效应(内光电效应)
- (3) 探测器中的噪声
- (4) 探测器中的主要特性参数
- 4. 光电器件
- (1) 光电阴极
- (2) 光电管与光电倍增管的工作原理
- (3) 光电倍增管的主要特性参数
- (4) 结型光电器件原理
- (5) 硅光电二极管

# 参考材料:

- [1]《工程光学》,作者: 郁道银、谈恒英主编, -3 版, 机械工业出版社 (2011-06)
- [2]《光电技术》,作者: 缪家鼎、徐文娟、牟同升编著,浙江大学出版社(1995-03)

811 电路

### 一、考试的总体要求

掌握电路的基本理论和分析计算电路的基本方法,灵活运用所学的电路理论及方法解决复杂的综合性电路问题。

### 二、考试的内容及比例

- 1. 基本概念: 电压、电流及其参考方向, 电阻、电容、电感、电压源和受控源等元件的特性及其电压电流关系, 线性和非线性的概念, 电功率和电能量, 电路模型, 基尔霍夫定律。
- 2. 线性电阻电路的分析:简单电阻电路的计算,星角转换,非理想电源的模型及其等效转换,支路分析法,回路分析法,节点分析法,叠加定理,互易定理,替代定理,戴维南定理和诺顿定理,匹配的概念。
- 3. 正弦交流电路的稳态分析:正弦量的基本概念,正弦量的相量、相量图、电路元件电压电流关系的相量形式、阻抗和导纳,基尔霍夫定律的相量形式,正弦电路的功率,功率因数,正弦电路的分析计算(复数运算、相量图分析),含互感电路的计算(互感电压、同名端、串联、并联、互感消去),谐振电路的特点及其分析计算,三相电路的连接方式,对称三相电路的电压、电流和功率的计算,非正弦周期电流电路的分析计算方法。
- 4. 线性动态电路的时域分析:一阶动态电路的动态过程,换路定则,一阶动态电路的分析计算(零输入响应,零状态响应和全响应,三要素法),阶跃函数和冲激函数,阶跃函数响应和冲激函数响应,二阶电路的时域分析。
- 5. 线性电路的复频域分析: 电路元件电压电流关系的复频域形式, 复频域阻抗和复频域导纳, 基尔霍夫定律的复频域形式, 用复频域分析法分析计算动态电路。
- 6. 非线性电路: 图解法和小信号分析法。
- 7. 网络方程的矩阵形式:关联矩阵,基本回路矩阵,基本割集矩阵,由关联矩阵建立节点方程、基本回路方程和基本割集方程。用直观法列写电路的状态方程。
- 8. 二端口网络: 二端口网络(包括有载二端口、有源二端口)及其四种参数(Z、Y、H、
- T) 方程和参数的计算, 互易条件, 对称条件, 二端口网络的等效电路, 二端口网络的联接。
- 9. 分布参数电路:无损传输线的正弦稳态解,特性阻抗,行波和驻波,入射波和反射波, 匹配的概念,无损传输线的暂态分析,波的发生和反射,柏德生法则。
- 10. 关于电工测量: 电压表、电流表和功率表在电路中的应用, 电路参数的测量, 功率的测量, 三相电路功率的测量。

上述前五部分约占总分的65%,后五部分约占总分的35%。

三、考试的题型及比例 计算题

四、考试形式及时间

考试形式为笔试,考试时间为 3 小时。

### 五、参考教材

电路基础理论, 孙雨耕, 高等教育出版社。

电路基础理论学习指导书,高等教育出版社,钱巨玺,余晓丹,李桂丹。

#### 一、考试的总体要求

包括经典控制理论和现代控制理论两部分,主要考察学生对自动控制系统进行分析和设计的能力。

### 二、考试内容及比例

经典控制理论部分(占60%)现代控制理论部分(占40%):

### 1、控制系统的数学模型

系统的输入、输出微分方程描述和传递函数描述,简单被控对象或系统的模型,结构图 及其化简,梅逊增益公式。

## 2、控制系统的时域分析

控制系统的稳定性,劳斯判据,控制系统的稳态误差,内模原理,一阶和二阶系统的响应及其指标,系统的主导极点和动态性能的估算,根轨迹绘制和分析方法。

### 3、控制系统的频域分析

系统的频率特性,幅相频率特性曲线的绘制,奈奎斯特稳定性判据,对数频率特性曲线的绘制,系统的开环频率特性及其指标,系统的闭环频率特性及其指标,系统频域指标和时域指标之间的关系。

### 4、控制系统的校正与综合

根轨迹法和频率特性法的串联超前校正,滞后校正,超前-滞后校正,按期望频率特性进行校正,复合校正。

### 5、系统的状态空间分析方法

系统的状态空间表达式,线性变换,系统的能控、能观标准实现和对角实现,状态方程的解,系统的能控性、能观性及其判定方法。

#### 6、系统的状态空间设计方法

系统的极点配置和镇定,系统的状态空间实现,状态观测器设计,状态反馈静态解耦和 动态解耦,渐近跟踪调节器设计。

### 7、非线性控制系统

非线性系统的描述函数分析,二阶系统的相平面分析,李亚普诺夫稳定性,系统在静态工作点处的线性化,李亚普诺夫第一法,李亚普诺夫第二法。

### 三、试卷类型

分析与计算题为主。

### 四、考试形式及时间

笔试, 三小时。

## 五、参考教材

- 1、自动控制原理,科学出版社,夏超英
- 2、自动控制原理,科学出版社,胡寿松
- 3、现代控制理论,机械工业出版社,刘豹
- 4、现代控制理论,科学出版社,夏超英

本考试课程由两部分组成,请考生根据自己的具体情况任选一部分进行答题。

第一部分: 半导体物理考试大纲(参加半导体物理考试的考生参考):

一、考试的总体要求

本课程为本专业主干专业基础课,要求考生掌握半导体物理的基本概念、p-n 结、MOS 结构、双极晶体管、MOS 晶体管等基本原理和应用。

- 二、考试的内容及比例
- (一) 考试内容要点:

第一部分: (50%)

- 1、半导体能带结构、半导体有效质量、空穴、杂质能级;
- 2、热平衡状态下半导体载流子的统计分布,本征半导体和杂质半导体的载流子浓度,简并半导体和重掺杂效应;
- 3、半导体的导电性:载流子的漂移运动、迁移率、散射、强电场效应、热载流子的概念, 半导体电阻率与温度、杂质浓度的关系,体内负微分电导;
- 4、非平衡载流子: 非平衡载流子的产生、复合、寿命、扩散长度、准费米能级,爱因斯坦 关系,一维稳定扩散,光激发载流子衰减;
- 5、p-n 结、MOS 结构: 平衡与非平衡 p-n 结特点及其能带图, pn 结理想和非理想 I-V 特性, p-n 结电容概念与击穿机制, p-n 结隧道效应、肖特基势垒二极管;
- 6、MOS 结构表面电场效应,理想与实际 MOS 结构 C-V 特性, MOS 系统的性质(固定电荷、可动离子、界面态对 C-V 特性的影响),表面电场对 p-n 结特性的影响;第二部分:(50%)
- 7、双极晶体管的基本结构、原理,少数子分布,低频电流增益和非理想效应;
- 8、双极晶体管的等效电路模型、频率特性和开关特性;
- 9、MOSFET 的基本结构、原理, 阈值电压, 电流电压关系, 击穿特性和频率特性;
- 10、MOSFET 的非理想特性:亚阈值特性、沟道长度调制效应、短沟道效应;
- 11、光器件与功率器件的原理、特点与应用
- (二) 比例:

两部分考试内容各占50%。

- 三、试卷题型及比例
- 1、概念与问答题: 40%;
- 2、论述题: 30%;
- 3、计算与推导题: 20%;
- 4、实验与综合题: 10%。
- 四、考试形式及时间

考试形式均为笔试。考试时间为 3 小时(满分 150)。

五、参考书目

半导体物理学,(第七版),刘恩科、朱秉升、罗晋生编著,电子工业出版社。

半导体物理与器件,(第四版),赵毅强、姚素英等译,电子工业出版社。

晶体管原理与设计, 陈星弼 张庆中等, 电子工业出版社。

第二部分: 电介质物理大纲 (参加电介质物理考试的考生参考):

一、考试的总体要求

本课程要求考生重点掌握电介质物理的基本原理与概念,并能运用这些基本概念分析和解释 有关的实际问题。

二、考试的内容及比例

### 考试具体范围如下:

- 1、恒定电场中电介质的极化
- (1) 介电常数和介质极化;
- (2) 有效电场:
- (3) 克-莫方程及其应用;
- (4) 极性液体介质的有效电场;
- (5) 电子位移极化、离子位移极化、转向极化、热离子极化、空间电荷极化。
- 2、恒定电场中电介质的电导
- (1) 气体介质的电导;
- (2) 液体介质的电导;
- (3) 固体介质的电导-固体介质的离子电导:
- (4) 固体介质的表面电导;
- (5) 直流电场下介质的绝缘电阻与能量损耗。
- 3、交变电场中电介质的损耗
- (1) 复介电常数和复折射率;
- (2) 介质损耗;
- (3) 弛豫现象;
- (4) 德拜方程;
- (5) 柯尔-柯尔圆弧律;
- (6) 介质损耗与温度的关系;
- (7) 计及漏电导时的介质损耗;
- (8) 有损耗电介质的等效电路。
- 三、试卷类型及比例
- 1、名词辨析题: 20%
- 2、填空题: 20%
- 3、简答题: 40%
- 4、综合题: 20%

四、考试形式及时间

考试形式均为笔试。考试时间为3小时(满分150分)。

### 五、参考书目

- 1、《电介质物理导论》,李翰如,成都科技大学出版社;
- 2、《电介质物理基础》,孙目珍,华南理工大学出版社;
- 3、《电介质物理》,张良莹、姚熹,西安交通大学出版社。

814 通信原理

### 一、考试的总体要求

《通信原理》是电子信息技术类专业的一门重要的基础理论课程。因此要求考生必须较好地掌握通信系统的基本原理,基本性能的分析方法;并应了解通信网的基本概念。能够运用数学的方法分析通信系统中各种调制、解调原理,掌握基本信源、信道编码和解码的原理和方法,能够对各种系统进行抗噪声性能分析。能够应用所学知识,对目前通信领域的一些实际问题进行分析研究,并能根据要求设计出性能指标较高的适用的通信系统。了解通信技术的发展动态。主要考核考生对基本知识和基本技能的掌握程度,了解考生在通信领域中分析问题和解决问题的能力。

- 二、考试的内容及比例
- 1、通信的基本概念: 定义,系统模型,信息的度量、性能分析指标。(占5%)
- 2、信道特性: 恒参和变参信道, 随机过程的基本概念、信道中的加性噪声, 信道容量公式应用。(占 10%)
- 3、模拟通信系统:调制的概念和分类、幅度调制和角度调制的时域和频域分析,调制和解调方法,带宽和功率的计算,噪声性能分析。频分复用。(占 15%)
- 4、信源编码: 抽样定理; PCM 和  $\Delta$ M 的编译码原理, 噪声性能分析; PCM 和  $\Delta$ M 的改进型; 时分复用基本概念。(占 15%)
- 5、数字信号的基带传输:常用码型,数字基带信号的功率谱、基带传输特性设计,基带传输带宽计算,奈奎斯特准则,眼图和均衡,部分响应技术。(占 10%)
- 6、数字信号的载波传输:二进制数字调制和解调方法。多进制数字调制的基本原理,产生和解调方法。各种数字调制的带宽计算。二进制和四进制数字调相的波形分析。最佳接收基本概念、最大输出信噪比准则和匹配滤波器的概念,二进制调制系统最佳接收机性能分析。(占 10%)
- 7、现代数字调制技术; MSK、QAM、 $\pi$  / 4-QPSK、OQPSK, 扩频通信等的基本原理, 调制和解调方法,码分多址的基本概念。(占 5%)
- 8、同步原理:载波同步、位同步、帧同步及网同步的基本原理和实现方法。(占 10%)
- 9、信道编码:有扰离散信道的编码定理,最小码距与检错、纠错的关系,差错控制技术,几种常用的检错码,掌握线性分组码、循环码的编译码原理,实现方法,了解卷积码的基本概念。(占 15%)
- 10、了解移动通信、光通信的基本知识及通信领域前沿技术发展动态。(占5%)
- 三、试卷类型及比例
- 1、基本知识;填空、选择题(占40%);
- 2、基本技能: 计算、作图,设计和证明(占60%);
- 3、课程内容大致比例:模拟通信占30%,数字通信占70%。
- 四、考试形式及时间

考试形式为笔试,考试时间为三小时(满分为150分)。

五、参考书目

《现代通信原理》第二版,沈保锁、侯春萍主编,国防工业出版社,北京,2006。

### 一、考试的总体要求

信号与系统是通信、电子信息、电子科学与技术等专业的一门专业基础课程,是国内外高校相应专业的主干课程之一。要求考生熟练地掌握本课程所讲述的基本概念、基本理论和基本分析方法,并利用这些经典理论分析、解释和计算信号、系统及其相互之间约束关系的问题。

- 二、考试的内容及比例
- (一)信号与系统的基本知识(10~20%)
- 1、基本信号及其两种(函数表达式和波形图)表示方法;
- 2、信号的基本运算;
- 3、系统的描述及系统的基本性质;
- (二)连续系统的时域分析(10~20%)
- 1、零输入响应和零状态响应的概念、性质及其求法;
- 2、冲激响应和阶跃响应;
- 3、卷积、卷积的性质及卷积的计算方法:
- 4、系统响应的时域求法;
- (三)连续信号与系统的变换域分析(30~40%)
- 1、周期信号的傅里叶级数;
- 2、周期信号的频谱及周期信号的傅立叶变换;
- 3、非周期信号的傅里叶变换及其性质;
- 4、取样信号、取样信号的频谱、取样定理及其应用;
- 5、周期和非周期信号通过线性系统的频域分析:
- 6、拉普拉斯变换及其性质;
- 7、信号通过线性系统的 S 域分析:
- 8、拉普拉斯变换与傅里叶变换之间的映射关系;
- (四)离散信号与系统分析(10~20%)
- 1、离散时间信号(序列)的描述及其运算;
- 2、离散卷积及其性质;
- 3、线性离散系统的特性及其描述方法;
- 4、差分方程的建立及其解法;
- 5、Z变换及其性质:
- 6、离散系统的 Z 域分析法;
- (五)系统函数(10~20%)
- 1、系统函数的零极点与系统响应之间的关系;
- 2、系统稳定性及其判断方法;
- 3、系统的方框图、信号流图表示法与系统模拟;
- (六)连续与离散系统的状态变量分析(10~20%)
- 1、状态、状态变量与状态方程的基本概念;
- 2、连续与离散状态方程的建立方法;
- 3、连续系统状态方程的求解;
- 4、离散系统状态方程的求解;
- 5、描述系统的状态方程与输入-输出方程之间的关系;
- 6、系统的稳定性、可控性和可观测性的概念。

# 三、试卷题型及比例

试卷题型分为简答题(包括选择题和填空题等)、一般计算题和综合计算题三种类型, 其中简答题和一般计算题约占 80~90%, 综合计算题约占 10~20%。

### 四、考试形式及时间

考试形式为笔试,考试时间3小时,满分为150分。

# 五、参考书目

《信号与线性系统分析(第四版)》,吴大正主编,高等教育出版社。

816 声学基础

### 一、 考试的总体要求

声学是物理学的一个分支,主要研究与声有关的各种现象,包括人耳不能听到的超声波和次声,声学基础是与声学各个分支学科的基础,是与声相关的研究和应用的基础课程。要求考生比较系统地理解声学基础的基本概念和基本理论,掌握声学基础的基本方法;会运用所学基本概念、理论和方法,分析、研究、计算和估算一般难度的声学问题,并能跟单位、数量级与已知典型结果的比较,判断结果的合理性。

### 二、考试的内容及比例

大学工科类专业的《声学基础》课程的基本内容,包含质点振动学、弹性体振动学学、声波的基本性质、声波的辐射、声波的接收与散射等。

(一) 质点振动学, 占 15%

包括: 质点振动系统的基本概念、质点的自由振动、质点的衰减振动、质点的强迫振动,具体考核点如下:

- 1. 自由振动方程,自由振动的一般规律,自由振动的能量;
- 2. 双弹簧串联与并联系统的振动,弹簧质量对系统固有频率的影响;
- 3. 衰减振动方程,衰减振动的一般规律;
- 4. 强迫振动方程,强迫振动的一般规律:
- (二)弹性体振动学,占15%

包括:弦、膜、板的振动,具体考核点如下:

- 1. 弦的振动方程:
- 2. 弦振动方程的一般解;
- 3. 模式的概念:
- 4. 棒的横振动、膜和板的振动概念。
- (三) 声波的基本性质,占30%

包括: 声压的基本概念、理想流体媒质中的声波方程、平面声波的基本性质、声场中的能量关系、声压级与声强级、响度级与等响曲线、声波的反射、折射与透射、声波的干涉。具体考核点如下:

- 1. 声压的基本概念:
- 2. 理想流体媒质中的三个基本方程、小振幅声波一维波动方程;
- 3. 三维波动方程、速度势;
- 4. 波动方程的解、声波的传播速度、声阻抗率与媒质特性阻抗;
- 5. 声能量与声能量密度:
- 6. 声功率与声强:
- 7. 声压级与声强级:
- 8. 响度级与等响曲线;
- 9. 声学边界条件:
- 10. 平面声波垂直入射时的反射和透射;
- 11. 平面声波斜入射时的反射与折射;
- 12. 叠加原理、驻波、声波的相干性;
- (四)声波的辐射,占30%

包括: 脉动球源的辐射、声偶极辐射、同相小球源的辐射、点声源。具体考

# 核点如下:

- 1. 球面声场;
- 2. 声辐射与球源大小的关系;
- 3. 声场对脉动球源的反作用——辐射阻抗;
- 4. 辐射声场的性质;
- 5. 偶极辐射声场;
- 6. 两个同相小球源的辐射声场;
- 7. 指向特性;
- 8. 自辐射阻抗和互辐射阻抗;
- 9. 互易原理、镜像原理、声柱;
- 10. 点声源。
- (五)管道和房间中的声波,占10%

包括:管道中声波的传播特点、封闭空间声波特征。具体考核点如下:

- 1.声波导中模式的概念,频散现象;
- 2.房间中声场的模式;
- 3.混响时间的概念和计算;
- 三、试卷类型及比例

问答题 50 分, 计算题 100 分, 共 150 分。

四、考试形式及时间

笔试,时间3小时

五、参考书目

《声学基础》(第 3 版),杜功焕、朱哲民、龚秀芬著,南京大学出版社,2012年。

817 土力学

### 一、 考试的总体要求

准确掌握土力学基础知识及概念;掌握土力学的基本原理,并能用于分析和解决实际工程问题,掌握实验方法,熟悉仪器的操作和工作原理;掌握土力学几个基本课题的原理及设计计算方法,准确运用公式进行计算。

- 二、考试的内容及比例
- 1. 土的物理性质:土颗粒与孔隙水的相互作用,颗粒级配曲线,常用土性指标的定义及关系推导,土的状态。占 15%。
- 2. 土体中应力计算:土体自重应力计算,附加应力计算(迭加法),基底压力计算,有效应力原理,有效路径。占10%。
- 3. 土的压缩性和地基沉降计算:压缩曲线,地基沉降量计算,饱和土的渗流固结理论。占20%。
- 4. 土的抗剪强度:土的抗剪强度的破坏理论,抗剪强度的试验方法,抗剪强度机理及影响 因素。占 15%。
- 5. 挡土结构上的土压力:静止土压力计算,朗肯土压力理论,库仑土压力理论。占 15%。
- 6. 地基承载力: 地基破坏形式,极限平衡理论求地基承载力的原理及分析计算方法。占15%。
- 7. 边坡稳定分析:无粘性土坡、粘性土坡的整体圆弧滑动法、条分法、复式滑动面稳定分析。占 10%。
- 三、 试卷类型及比例
- 1. 概念题 10%
- 2. 简答题 30%
- 3. 证明题及公式推导 20%
- 4. 分析计算题 40%

四、 考试形式及时间 笔试,时间 3 小时。 818 结构力学

### 一、总体要求

结构力学课程是结构工程、桥梁及隧道工程、水利水电工程等专业的技术基础课。考试的基本要求是准确理解基本概念及结构技术原理;掌握各种结构计算方法。能做到活学活用,所得的计算结果正确。

### 二、考试内容及比例

- 1.平面体系的几何组成分析: 5%
- **2**.静定结构的内力及位移计算:包括静定梁、静定刚架、静定拱、静定桁架及静定组合结构的内力与位移计算 **25**%
  - 3.超静定结构的内力及位移计算:包括用力法及位移法计算超静定结构 40%
  - 4.结构在移动荷载作用下的计算:包括影响线的做法及应用 5%
- 5.结构在动力荷载作用下的计算:包括单自由度及多自由度体系的自由振动及单自由度及多自由度体系在简谐荷载作用下的强迫振动 25%

### 三、试卷题型及比例

以分析及计算题为主

### 四、考试形式及时间

笔试 3 小时

### 五、参考书

- 1.毕继红、王晖编著:结构力学(上、下册),天津大学出版社,2016
- 2.刘昭培、张韫美编著:结构力学(上、下册),天津大学出版社,2006

819 水力学

### 一、考试的总体要求

考查学生对水力学的基本概念、基本原理、基本方法,以及对流体运动的一般规律、分析方法的掌握程度,考查学生的分析问题、解决问题的能力和计算能力。

- 二、考试的内容及比例
- 1. 水静力学(约25%)

点压强的计算、作用在平面静水总压力的计算、作用在曲面静水总压力的计算;相对压强分布图、压力体图的绘制,水静力学基本概念。

2. 水运动学及动力学(约30%)

恒定总流的连续性方程、能量方程、动量方程的综合运用;液体运动的基本概念(包括一维流动、二维流动、三维流动);有旋流与无旋流的判别。

3. 流动阻力与能量损失(约10%)

流动阻力与能量损失的基本概念, 能量损失系数的计算方法。

4. 孔口、管嘴及有压管中恒定流(约15%)

孔口、管嘴的流动特征及基本概念; 测压管水头线与总水头线的绘制; 有压管流的计算。

5. 恒定平面势流(约5%)

流函数、势函数与流速的关系。

6. 量纲分析与相似原理(约5%)

量纲和谐性; π定理; 重力相似准则。

7. 明渠恒定流、堰流、闸孔出流(约10%)

基本概念、水流现象。

- 三、试卷题型及比例
- 1. 判断题(约10分)
- 例: 明渠均匀流一定是恒定流()
- 2. 选择题(约15分)
- 例:沿程变管径的有压管道的测压管水头线的变化规律是()
- A. 沿程下降; B. 沿程上升; C. 沿程不变; D. 沿程可升可降。
- 3. 简答题(约30分)

例:写出佛汝德数的数学表达式,并说明其物理意义。

4. 绘图题(约10分)

静水压强分布图;压力体图;测压管水头线、总水头线。

- 5. 计算题(约85分)
- (1) 静止液体点压强的计算。
- (2) 作用于平面或曲面上的静水总压力的计算。
- (3) 三大基本方程的应用: 恒定总流连续方程、能量方程、动量方程的应用。

#### 四、考试形式及时间

考试形式为笔试,考试时间3小时。

参考书:水力学,高学平,张效先主编,中国建筑工业出版社,2010年7月第四次印刷及以后版本。

### 一、 考试总体要求

结构力学与弹性力学基础是港口航道及海岸工程、水利水电工程等专业的专业技术基础课。 考试的总体要求是:准确理解结构力学与弹性力学基本概念和计算原理,掌握各种平面杆系 结构的计算方法以及弹性力学平面问题的基本求解方法,能够做到活学活用,计算方法及所 得计算结果正确。

- 二、考试内容及比例
- 1、平面体系的几何组成分析: 5%
- 2、静定结构的内力及位移计算:静定结构包括静定梁、静定平面刚架、三铰拱、静定平面桁架、静定组合结构。位移计算包括结构在荷载作用下的位移计算;及结构由于温度改变和支座移动引起的位移 15%
- 3、超静定结构的内力及位移计算:包括用力法及位移法计算超静定结构。占40%
- 4、结构在移动荷载作用下的计算:包括影响线的做法及应用。占5%
- 5、结构在动力荷载作用下的计算:包括单自由度体系及多自由度体系的自由振动与在简谐 荷载作用下的强迫振动。占 20%
- 6、弹性力学基础:包括弹性力学基本概念、平面问题基本理论、平面问题直角坐标解答。 占 15%
- 一、 试卷题型及比例:
- 1、选择题: 20%
- 2、分析计算题: 80%
- 二、 考试形式及时间

形式为笔试, 考试时间为三小时

### 一、 考试的总体要求

本试卷主要考查考生对结构力学和结构动力学的基本概念、基本原理及基本解题方法的掌握情况、掌握的水平,通过试题的求解考察学生运用所学知识解决问题的能力。

二、 考试的内容及比例

本试卷分成:船舶工程类及海洋工程类试题。

船舶工程类考试内容及比例:

船舶结构力学占整个内容的 70%, 结构动力学占整个内容的 30%;

- 1. 结构力学考试内容:
- (1) 力法、位移法求解超静定结构的基本原理以及相应的基本概念;运用以上两种方法求解船舶中常见结构在外力作用下的位移及内力分布、绘制弯矩图剪力图;正确理解弹性支座及弹性固定端的物理含义,求解相应的弹性系数;正确理解超静定结构内力分布的特点、梁的复杂弯曲问题,并进行定性分析。
- (2) 开、闭口薄壁杆件断面自由扭转、非自由扭转的基本概念,求解开、闭口薄壁杆件 断面自由扭转应力分布及转动惯性矩。
- (3) 能量法求解单跨梁弯曲问题的基本原理及方法,根据梁的约束条件及外力状况选择 基函数、写出应变能及力函数。
- (4) 板平面问题及板平面问题有限元求解的基本概念,不要求计算。
- (5) 板弯曲问题以及板梁组合结构的弯曲问题基本概念。
- (6) 船舶杆系结构稳定性、板后屈曲性能的基本概念,能够进行定性分析,不要求具体求解。
- 2. 结构动力学考试内容

单自由度振动的基本概念,单自由度振动方程的建立,单自由度自由振动的特点及分析方法,有阻尼自由振动分析,阻尼对振动的影响,无阻尼强迫振动特点及分析方法,共振的概念及形成,有阻尼强迫振动特点及振动响应计算方法。两个自由度振动方程的建立,可以采用直接平衡法和能量方法,不要求求解。

海洋工程类考试内容及比例:

船舶结构力学占整个内容的 100%。

### 考试内容

- (1)-(4)与船舶工程类船舶结构力学内容一致。
- (5) 板弯曲问题以及板梁组合结构的弯曲问题基本概念,利用解析法或板条梁的方法求解 板的弯曲问题。
- (6) 船舶杆系结构稳定性、板后屈曲性能的基本概念,进行定性分析,利用解析法求解杆系结构及矩形板的临界应力。
- 三、 试卷类型及比例

试卷类型: 简答题、论述题、绘图题、计算题。其中简答题、论述题、绘图题占整个试题的 40-45%, 计算题占 60-55%。

四、考试形式及时间

笔试,时间3小时。

822 船舶总论与设备

课程编号: 822

课程名称:船舶总论与设备

### 一、考试的总体要求

主要考查学生船舶总论相关知识,及船舶设备的基本知识、基本概念以及进行船舶总体设计时综合运用相关知识的基本能力。

### 二、考试的内容及比例

- 1、船舶总论考试内容:船舶与海洋工程卓越工程创新人才培养的目标和标准,学生成长成才的规律,船舶与海洋工程在国家安全与国民经济中的重要性,深海油气开发新型浮式生产装置及其生产工艺流程,深水海洋工程开发概况,深海石油专用构件关键技术及深海结构压力舱试验流程,新型船舶设计开发与数字化造船技术,高性能船舶(三体船),深海运载器作业技术,共占50%。
- 2、船舶设备考试内容:船舶六种设备(舵装置,装卸设备,锚设备,救生设备,系缆设备,推拖设备)的种类、组成、设计原则,吊杆装置、绞车受力计算方法或系泊长度计算,共占50%。

### 三、试卷类型及比例

船舶总论部分:论述题 39 分,问答题 36 分,共 75 分。船舶设备部分:问答题 50 分,计算题 25 分,共 75 分。

四、考试形式及时间 笔试,时间3小时

823 绘画测试

适用专业名称:美术学(适用冯骥才艺术所、王学仲艺术所、工笔重彩艺术研究)

课程编号: 823

课程名称:绘画测试

- 一、考试的总体要求
  - 1、评图要求: 造型准确 50%: 构图合理 30%; 技法娴熟 20%
  - 2、所用绘画工具:钢笔、铅笔、毛笔均可。
- 二、考试内容及比例

以线描绘画为主:内容包括石膏像、人物、植物写生,创作。

三、考试形式及时间

考试形式均为绘画笔试。考试时间为3小时。

\_\_\_\_\_

-----

# 适用专业名称:美术学(适用数字媒体/动画创作研究方向)

- 一、考试的总体要求
  - 1、评图要求: 能根据剧本绘制标准分镜头 50%; 镜头运用合理完美 30%; 表现技巧 20%
  - 2、所用绘画工具: 动画分镜头绘制工具。
  - 3、考生自备分镜头专用画纸。
- 二、考试内容及比例

根据提供的剧本进行分镜头绘制。

三、考试形式及时间

考试形式均为绘画笔试。考试时间为3小时。

- 四、参考书目:
- 1、中国美术史
- 2、西方美术史
- 3、艺术概论。

### 适用专业名称:美术学(油画创作与理论研究)

- 一、考试的总体要求
  - 1、评图要求: 主题表达准确或造型准确生动 50%; 构图与画面形式 30%; 艺术语言与 表达 20%
  - 2、所用绘画工具:油画材料、工具。
  - 3、考生自备 50X60cm 带框画布与工具材料。
- 二、考试内容及比例

油画命题创作。

三、考试形式及时间

824 建筑技术综合

- 一、考试的总体要求
- 1、考试内容包括建筑构造和建筑物理两个独立部分,每部分各 150 分,考生可选择其中之一回答,但不得交叉选答。
- 2、要求回答问题应概念清楚、全面,计算准确;绘图应整洁、清晰、完整,并根据题目具体要求,对必要的数字、尺寸、标注及各部分(或各构件)之间的关系,以及所使用的材料做法作出正确的表达和说明。
- 二、考试内容及要求:

### 建筑构造:

### (一)考试要求:

- 1、掌握中小型民用建筑构造基本原理和方法;掌握常用建筑材料的种类及其基本性能;了解建筑工业化以及大型公共建筑构造的一般构造原理和基本构造方法;
- 2、能根据方案设计图综合运用建筑构造理论和方法,建筑材料及一般结构知识进行一般中、小型民用建筑的构造设计、完成平、立、剖面及部分构造详图的设计。了解和掌握建筑施工图的基本要求和绘制方法。

### (二)考试的内容:

- 1、基本概念:建筑物的分类与分等;建筑物的构造组成及其作用;影响建筑构造的因素与构造设计原则;建筑统一模数制与定位线。
- 2、地基与基础:
- 1) 地基、基础的设计条件及要求。
- 3、墙:
- 1)墙体的类型与设计要求。
- 2) 墙面:装修要求与构造。
- 3)墙体节能设计的基本概念,常用材料及构造做法。
- 4、地板层及楼板层:
- 1) 地板层的作用、组成和设计要求。
- 2) 楼板层的组成和设计要求,顶棚、雨蓬、阳台设计要求与构造。
- 5、屋顶:
- 1) 屋顶设计要求、类型。
- 2) 坡屋顶、平瓦屋顶构造做法; 吊顶作用及构造做法。
- 6、楼梯与台阶:
- 1) 楼梯的组成与形式,设计要求,结构与构造,细部构造。
- 2) 室外台阶与坡道及其无障碍设计。
- 7、门窗:
- 1)门窗材料、构造设计要求。
- 2)门窗节能设计基本概念。
- 8、建筑工业化:
- 1) 建筑工业化的含义和基本特征(四化一改); 工业化建筑的类型、特点,设计要求及构造。
- 9、多高层建筑:
- 1) 多高层建筑的分类、结构体系及基本造型。高层建筑的特殊构造: 楼板材料与构造; 外墙材料与构造要求。地下室防潮、防水构造。

- 2) 高层建筑楼、电梯、自动扶梯的设计及其防火要求。
- 10、大跨建筑屋顶:
- 1) 大跨度屋顶结构类型及其应用(建筑形式、结构特点、主要构造尺寸及尺度)。
- 2) 屋面构造。
- 3) 大厅顶棚:顶棚的设计要求与类型;大厅顶棚构造。
- 4)顶部采光类型与构造。
- 11、高级装修:
- 1)墙面装修的种类与构造。
- 2) 地面装修构造。
- 3) 吊顶装修构造。
- 12、变形缝及抗震措施:
- 1) 变形缝类型、设置部位及要求。各种变形缝构造。
- 2) 抗震设计的基本知识及抗震措施。
- 13.建筑节能:
- 1)建筑外围护结构保湿构造。
- 2) 建筑外围护结构隔热构造。
- 3) 建筑外围护结构遮阳构造。
- (三) 试卷题型及比例
- 1、判断、填空、名词解释, 25%~35%;
- 2、根据文字条件作图、补图、改错图,25%~35%
- 3、根据指定部位进行构造设计,约35%。

该部分满分为150分。

#### 建筑物理:

### (一)、考试要求:

要求考生掌握建筑物理的基本知识、基本概念,基本理论,基本常识,基本计算,建筑材料的基本物理特性,满足物理环境要求的基本构造原理。

- (二)、考试的内容及比例
- 1、建筑声环境(建筑声学)
- 1) 声学基本知识: 声学基本名词,基本计量参数,常见参数单位及换算;人耳对声音感受的特点及衡量方法等。
- 2) 吸声材料和吸声结构:不同类型材料的吸声特点,吸声机理,选择及布置吸声材料和吸声结构的基本方法等。
- 3) 音质设计:厅堂体形及混响时间的设计及计算方法,室内声压级的计算方法,创造良好音质条件的整个设计步骤。
- 4) 建筑隔声与噪声控制: 空气声及撞击声隔声评价方法及标准,常见材料和构件的隔声特点;质量定律,吻合效应,共振频率;影响空气声隔声及撞击声隔声的因素,常见隔声措施;常见噪声的种类及特点,常见噪声评价量,常见减少噪声干扰的措施。
- 2、 建筑热环境(建筑热工)
- 1) 热工基础知识:导热、对流、辐射的概念及其影响因素;建筑热环境的基本名词:导热系数,辐射换热系数,稳定传热,热阻,总热阻,最小总热阻,传热系数,蓄热系数,热惰性指标,热桥,绝对湿度,相对湿度,露点温度,赤纬角,太阳方位角,太阳高度角,室外综合计算温度等。常用单位及换算。
- 2) 建筑传热与保温: 平壁稳定传热条件下的热阻(匀质实体结构的传热阻,多层结构的传

热阻,非匀质实体结构的传热阻,封闭空气层的热阻,平壁内部温度计算,外围结构的保温设计。)

- 3) 建筑传湿: 围护结构表面及内部冷凝产生的条件、检验方法及防止措施。
- 4) 建筑防热: 夏季室内过热的原因,建筑防热的途径;降低室外综合温度途径,围护结构隔热措施,自然通风的组织与建筑群及建筑物设计的关系,建筑遮阳方式、遮阳效果及计算。
- 5) 建筑日照:阳光的作用及控制利用途径,太阳的位置及其变化规律,日照计算方法。
- 3、建筑光环境(建筑光学)
- 1)建筑光学基本知识:基本光度单位及应用:光通量、发光强度,照度,亮度,采光系数,临界照度;材料光学性质:规则反射和透射,扩散反射和透射;可见度及其影响因素等。
- 2) 天然采光: 常见建筑采光系数,常见采光方式(侧窗和天窗)特点及应用范围;天然采光设计的步骤;教室及美术馆采光设计要点等。
- 3) 建筑照明: 常见人工光源及灯具的特性(发光效率、寿命、色温、显色性、配光曲线、 遮光角、灯具分类及应用范围等)。
- 4) 照明设计:各种照明方式的特点及应用范围,各种典型建筑照明设计要点(博展建筑、学校、商店等),室外景观照明设计方法及绿色照明设计要点。
- 三、试卷题型及比例

题型:1 名词解释 2 填空题 (占 30%-40%)

3 选择题 4 判断与改错题 (占 30% -40%)

5 计算题 6 简述或论述题 (占 30% -40%)

该部分满分为150分。

试题涉及声,光,热部分的比例大致相等。

四、 考试形式及时间

考试形式为笔试。考试时间:连续3小时

五、参考书目:

建筑构造部分:

(1) 考试内容及要求

考试内容以《建筑构造》上、下册教材为主,辅以相关参考书目、标准图集、建筑资料集有 关建筑组成及构件的内容和相关建筑节能、绿色建筑等技术内容。

(2) 主要参考书目: 1、《中国建筑史》,中国建筑工业出版社; 2、《中国古代建筑史》,刘敦桢主编,中国建筑工业出版社; 3、《华夏意匠》,李允鉌著,中国建筑工业出版社; 4、《外国建筑史(十九世纪末以前)》,中国建筑工业出版社; 5、《外国近现代建筑史》,中国建筑工业出版社; 6、《城市规划原理》,同济大学主编,中国建筑工业出版社; 7、《外国城市建筑史》,沈玉麟编,中国建筑工业出版社; 8、《建筑构造》(上、下册),重庆建筑大学,李必瑜,刘建荣等,中国建筑工业出版社。9、《建筑构造》(第一册、第二册),南京工学院建筑系《建筑构造》编写小组,中国建筑工业出版社。10、《现行建筑设计规范大全》,中国建筑工业出版社编辑出版。11、《建筑设计资料集》(第二版),中国建筑工业出版社编辑出版。12、参考各地建筑设计标准图集。

建筑物理部分主要参考书目::

《建筑物理》(第三版)东南大学柳孝图编著中国建筑工业出版社出版,《建筑构造(上)》重庆大学主编:李必瑜中国建筑工业出版社。

825 微生物学

#### 一、考试的总体要求:

要求学生掌握有关微生物形态与细胞结构、繁殖方式与生活史、生长条件与生长规律、营养类型与产能代谢方式、基因突变与基因重组、生态、免疫和分类等方面的基本概念和基本理论;熟悉细菌、放线菌、蓝细菌、酵母菌、霉菌及病毒常见种属的典型生物学特点;掌握基本微生物学研究方法及应用技术的原理和规范。

### 二、考试的内容及比例: (重点部分)

### 1、微生物的形态和细胞结构(20%):

微生物主要类群包括:细菌、放线菌、篮细菌、霉菌和酵母菌。微生物形态、大小、原核细胞主要结构和生化组成、真核微生物细胞结构特点、微生物的无性和有性繁殖方式及生活史等方面的基本概念和理论;常见微生物种属在形态、细胞结构、繁殖方式等方面的典型特征;显微镜操作、革兰氏染色等基本实验方法的原理和规范。

### 2、微生物的营养(6%)

微生物营养的基本概念和原理,包括微生物细胞元素组成、营养要素、常用营养物质、各种营养类型等;微生物营养物运输的基本概念,及典型运输方式的生物学过程,包括:简单扩散、促进扩散、主动运输、PTS系统等;培养基制备的一般方法、规范和主要培养基类型。

### 3、微生物的代谢(20%)

四种营养类型微生物的产能和主要营养物质同化代谢,包括:糖分解代谢、三羧酸循环、典型发酵、有氧和无氧呼吸、无机物生物氧化、光能转化、二氧化碳同化、氮同化代谢等的基本概念和基本理论,以及重要代谢途径和关键酶。代谢调控的基本概念。

### 4、微生物的生长繁殖及其控制(10%)

微生物的一般生长规律的概念和理论,包括:纯培养分离、生物量和生长曲线的测定方法、主要生长参数的测定和计算方法;各种微生物生长对主要环境因素的要求及基本原理;控制微生物生长的常用方法、操作条件和原理。

#### 5、病毒(6%)

病毒的形态结构、生化组成、增值方式和生活周期的基本概念和理论,包括:常见肠杆菌科典型噬菌体的具体形态、结构;烈性噬菌体、温和性噬菌体、逆转录病毒的一般增值方式和生活周期;病毒分类学基本概念。

### 6、微生物遗传与基因表达的调控(20%)

微生物基因组、质粒、转座子、原核基因及操纵子结构等的基本概念;原核基因及操纵子表达调控机制的基本概念和基本模式;微生物基因突变的一般概念、原理,诱变育种应用的基本方法和规范;细菌基因重组的概念、生物学过程及基本应用,包括转化、转导、接合和原生质体转化;菌种保藏和复壮的基本概念和主要方法。

#### 7、微生物生态学(6%)

微生物的分布、微生物与其它生物的关系、微生物在物质循环和能量流动中的作用等方面的基本概念和原理;典型的微生物生态现象,包括:极端环境微生物、固氮菌、菌根菌、瘤胃微生物等。

### 8、微生物分类学(6%)

微生物分类单元和命名法则的基本概念和规范,及常见重要微生物的学名;微生物系统分类的主要分类依据和分类特点,包括 16S RNA、(G+C)%、三域系统等的基本概念;原核微生物分类系统"伯杰氏手册",主要真菌分类系统"真菌字典"的基本分类特征。

#### 9、传染与免疫(6%)

病源微生物感染的基本概念;主要免疫因子和免疫细胞的一般特点;非特异性和特异性免疫机制一般生物学过程;免疫学的基本应用。

- 三、试卷题型及比例
- 1、 选择题、填空题、判断题: 50%
- 2、 简答题、论述题: 50%
- 四、考试形式及时间

考试形式均为笔试。考试时间为三小时(满分 150)。

826 化工原理

#### 一、考试的总体要求

对于学术型考生,本考试涉及三大部分内容: (1) 化工原理课程, (2) 化工原理实验, (3) 化工传递。其中第一部分化工原理课程为必考内容(约占85%), 第二部分化工原理实验和第三部分化工传递为选考内容(约占15%), 即化工原理实验和化工传递为并列关系, 考生可根据自己情况选择其中之一进行考试。

对于专业型考生,本考试涉及二大部分内容: (1) 化工原理课程,(2) 化工原理实验。均为必考内容,其中第一部分化工原理课程约占85%,第二部分化工原理实验约占15%。

要求考生全面掌握、理解、灵活运用教学大纲规定的基本内容。要求考生具有熟练的运算能力、分析问题和解决问题的能力。答题务必书写清晰,过程必须详细,应注明物理量的符号和单位,注意计算结果的有效数字。不在试卷上答题,解答一律写在专用答题纸上,并注意不要书写在答题范围之外。

#### 二、考试的内容及比例

### (一)【化工原理课程考试内容及比例】(125分)

#### 1. 流体流动(20分)

流体静力学基本方程式;流体的流动现象(流体的黏性及黏度的概念、边界层的概念);流体在管内的流动(连续性方程、柏努利方程及应用);流体在管内的流动阻力(量纲分析、管内流动阻力的计算);管路计算(简单管路、并联管路、分支管路);流量测量(皮托管、孔板流量计、文丘里流量计、转子流量计)。

### 2. 流体输送设备(10分)

离心泵(结构及工作原理、性能描述、选择、安装、操作及流量调节);其它化工用泵;气体输送和压缩设备(以离心通风机为主)。

3. 非均相物系的分离(12分)

重力沉降(基本概念及重力沉降设备-降尘室)、; 离心沉降(基本概念及离心沉降设备-旋风分离器); 过滤(基本概念、恒压过滤的计算、过滤设备)。

#### 4. 传热(20分)

传热概述; 热传导; 对流传热分析及对流传热系数关联式(包括蒸汽冷凝及沸腾传热); 传 热过程分析及传热计算(热量衡算、传热速率计算、总传热系数计算); 辐射传热的基本概 念; 换热器(分类,列管式换热器的类型、计算及设计问题)。

### 5. 蒸馏(16分)

两组分溶液的汽液平衡;精馏原理和流程;两组分连续精馏的计算。

#### 6. 吸收(15分)

气一液相平衡; 传质机理与吸收速率; 吸收塔的计算。

### 7. 蒸馏和吸收塔设备(8分)

塔板类型;板式塔的流体力学性能;填料的类型;填料塔的流体力学性能。

#### 8. 液-液萃取(9分)

三元体系的液-液萃取相平衡与萃取操作原理:单级萃取过程的计算。

### 9. 干燥(15分)

湿空气的性质及湿度图;干燥过程的基本概念,干燥过程的计算(物料衡算、热量衡算);

干燥过程中的平衡关系与速率关系。

(二)【化工原理实验考试内容及比例】(25分)

1. 考试内容涉及以下几个实验

单相流动阻力实验;离心泵的操作和性能测定实验;流量计性能测定实验;恒压过滤常数的测定实验;对流传热系数及其准数关联式常数的测定实验;精馏塔实验;吸收塔实验;萃取塔实验;洞道干燥速率曲线测定实验。

2. 考试内容涉及以下几个方面

实验目的和内容、实验原理、实验流程及装置、实验方法、实验数据处理方法、实验结果分析等几个方面。

- (三)【化工传递考试内容及比例】(25分)
- 1. 微分衡算方程的推导与简化

连续性方程(单组分)的推导与简化;传热微分方程的推导与简化;传质微分方程的推导与简化。

2. 微分衡算方程的应用

能够采用微分衡算方程,对简单的一维稳态流体流动问题、导热问题及分子传质问题进行求解。

### 三、试卷的题型及比例

化工原理课程部分试题包括基本概念题和应用题。基本概念题型可以是填空题,也可以是选择题,概念题约占25%;应用题包括过程计算题和过程分析题,一般5~6题,约占60%。化工原理实验部分的题型为填空题、选择题及实验设计题;化工传递部分的题型为推导(或推导与计算相结合)题。化工原理实验(或化工传递)部分约占15%。

### 四、考试形式及时间

考试形式均为笔试。考试时间为三小时(满分150)。

827 生物化学

### 一、 考试的总体要求

要求考生全面掌握、理解并灵活运用生物化学教学大纲规定的教学内容。要求考生熟知理论内容并具有分析和解决实际问题的能力。试卷务必书写清楚、符号和西文字母运用得当。不在试题上答卷。

- 二、 考试的内容及比例: (重点部分)
  - (一) 生物化学理论课考试范围 (90%)
- 1. 蛋白质化学 (14%)
- (1) 蛋白质的化学组成, 20 种氨基酸的简写符号
- (2) 氨基酸的理化性质及化学反应
- (3) 蛋白质分子的结构和功能(一级、二级及高级结构的特点及与功能的关系)
- (4) 氨基酸顺序测定的一般步骤
- (5) 蛋白质的理化性质及分离纯化的方法和纯度鉴定
- 2. 核酸化学 (8%)
- (1) 核酸的组成及分类
- (2) 核苷酸的结构
- (3) DNA 和 RNA 的一级结构和二级结构的特点
- (4) RNA 的分类及各类 RNA 的生物学功能
- (5) 核酸的主要理化特性
- 3. 糖类结构与功能 (4%)
- (1) 糖的主要分类及其各自的代表
- (2) 糖的缀合物及其代表和它们的生物学功能
- 4. 脂类与生物膜 (5%)
- (1) 脂的分类,及各自特点
- (2) 脂类与生物膜的关系
- (3) 生物膜的化学组成, "流体镶嵌模型"的要点
- 5. 酶学 (10%)
- (1) 酶促反应的特点
- (2) 酶的作用机理
- (3) 影响酶促反应的因素(米氏方程的推出及米氏常数的意义)
- (4) 酶的提纯与活力鉴定及活力单位
- 6. 维生素 及激素(6%)
  - (1) 维生素的分类
  - (2) 维生素与辅酶的关系及其作用机理
- (3) 激素的分类
- (4) 激素与蛋白质、脂类和固醇的关系
- 8.糖的分解代谢和合成代谢 (10%)
  - (1) 无氧酵解、有氧氧化及磷酸戊糖的代谢途径及其在代谢过程中能量产生与消耗
  - (2) 无氧酵解与有氧氧化之间的关系
  - (3) 糖元的异生作用及其代谢途径
- 9. 生物氧化 (3%)
- (1) 生物体中(有线粒体)典型的呼吸链及其组成

- (2) 呼吸链的排列顺序及其产生 ATP 的位置
- 10. 脂类的代谢与合成 (5%)
  - (1) 脂肪的分解代谢,脂肪酸的β-氧化过程
  - (2) 酮体的生成和利用
  - (3) 脂肪酸的生成及脂肪的合成
  - 11. 核酸的代谢与合成 (10%)
  - (1) 嘌呤、嘧啶核苷酸的分解代谢与合成代谢的途径
  - (2) DNA 的半保留复制及意义, DNA 的复制过程和特点
  - (3) RNA 的转录过程. 各种 RNA 转录后的成熟过程
  - (4) DNA 重组技术中的有关概念及名词
  - 12. 蛋白质的代谢与合成 (10%)
  - (1) 蛋白质的分解产物 CO2、胺、氨及\*-酮戊二酸的去向
  - (2) 蛋白质的合成体系及其作用机理
  - (3) 蛋白质的合成过程
- 13.代谢调空(5%)
- (1)酶的调节、激素的调节、反义核酸的调节和神经的调节
- (2)以上四种调节之间的关系
- (二)生物化学实验课考试范围 (10%)
- 1. 生物化学实验教学大纲中所有实验的原理

内容包括:还原糖的测定,氨基酸的纸层析,蛋白质及氨基酸的颜色反应,血清蛋白的醋酸纤维膜电泳,酪蛋白的制备,菜花中核酸的提取及特性鉴定,酶的特性及聚丙烯酰氨凝胶电泳(SDS-PAGE)

- 2. 常用试剂的配制及仪器使用的注意事项
- 三、 试卷题型及比例

《生物化学》试卷含生物化学实验部分(占 10%)。试卷有概念及问答题。概念题分为填空、选择及判断题三类,约占 20~30%;名词解释约占 10%;问答题一般有 6~7 题(包括详答题和简答题及很简单的计算内容),占 50~60%。概念题及问答题涉及生物化学教学大纲中各章的内容。

四、 考试形式及时间

考试形式均为笔试。考试时间为三小时(满分150分)。

### 一、考试的总体要求

全面掌握制药工艺学的基本概念、基本原理和基本技能,熟悉代表性产品的工艺研究、工艺过程与控制原理等,具有应用所学知识进行分析和解决工艺过程中存在问题的初步能力。

### 二、考试的内容及比例

### 1. 生物制药 (50%)

掌握生物制药的主要原理与工艺技术,包括微生物发酵制药、基因工程制药、动物细胞培养制药等。

- (1) 微生物发酵制药(25%): 掌握制药微生物的特性和发酵药物的种类、发酵原理、工艺研究和过程的优化控制等。熟悉抗生素类、氨基酸、维生素药物的微生物发酵制造工艺与控制。
- (2) 基因工程制药(13%): 掌握基因工程制药的生物种类及表达载体的构建,基因菌的种类与构建、工程菌培养工艺研究与过程控制等。熟悉基因工程菌生产干扰素工艺等。
- (3) 动物细胞工程制药(12%): 掌握动物细胞特征与工程细胞的构建、培养原理与技术、工艺研究和控制。熟悉动物细胞生产红细胞生成素工艺等。

#### 2. 化学制药 (25%)

掌握化学制药的工艺原理与工艺过程,包括工艺路线设计、合成工艺研究、手性技术及 其典型化学药物的生产工艺。

- (1) 药物工艺路线的设计方法与选择原则(3%): 掌握类型反应法、分子对称法、追溯求源法、模拟类推法等设计方法,并能根据反应类型、合成步骤、原辅材料的来源等评价和选择工艺路线。
- (2) 合成工艺研究 (5%): 掌握化学制药工艺研究的主要内容以及各种反应条件对反应 过程的影响,包括反应物浓度与配料比、溶剂、反应温度、压力、催化剂等。
  - (3) 手性制药技术(2%): 掌握手性药物的化学制备方法,包括化学拆分和不对称合成。
- (4) 典型化学药物工艺 (15%): 掌握氯霉素、紫杉醇、头孢氨苄、氢化可的松、奥美拉 唑等的生产工艺原理以及工艺条件的研究和控制。

### 3、制药共性技术(25%)

- (1) 制药工艺计算 (7%): 掌握物料衡算、能量衡算与工艺的经济性评价。
- (2) 反应器及其设计(6%): 掌握反应器类型与结构特点、发酵罐、搅拌斧、其他新型反应器的设计与过程分析。
  - (3) 中试放大(6%): 掌握放大的基本方法和放大研究、生产工艺规程的制定。
  - (4) 三废处理工艺(6%): 掌握制药企业污染种类及其三废处理原理与工艺。

#### 三、考试的题型及比例

专业术语的中英文对译 14%; 名词解释 12%; 选择题 12%; 填空题 12%; 简答题 20%; 论述题 30%。

### 四、考试形式及时间

考试形式为笔试。考试时间为三小时(满分150)。

830 材料加工基础

### 一、考试的总体要求

要求考生比较系统的掌握本课程的基本理论和学习方法,较系统的理解金属与合金的化学成分、结构、组织、热处理工艺与性能之间的内在联系,以及在各种材料热加工条件下的合金的组织、性能变化规律,要求考生应具有综合运用所学知识分析和解决实际工程问题的能力。

### 二、考试的内容及比例: (重点部分)

- 1、金属和合金的结晶、晶体结构和相结构理论
- 2、铁-碳合金相图及相结构
- 3、金属及合金的塑性变形与断裂
- 4、金属与合金的回复与再结晶
- 5、扩散
- 6、钢的热处理原理
- 7、钢的热处理工艺
- 8、工业用钢
- 9、焊接热影响区的组织与性能

试卷中金属学基础知识和理论占 30~45%,热处理及工业用钢占 40~50%,焊接热影响区 占 5~10%。

#### 三、试卷题型及比例

概念、填空、选择或判断 占 30~40% 简要问答题 占 20~30%。 综合分析、灵活运用题 占 30~45%

### 四、考试形式及时间

考试时间为三小时(满分150分)。

### 五、主要参考教材(参考书目)

- 1. 崔忠圻、覃耀春 主编,《金属学与热处理》(第二版),北京:机械工业出版社,2007.5.
- 2. 张文钺 主编,《焊接冶金学》(基本原理),北京:机械工业出版社,1999.

### 一、考试的总体要求

本课程考试内容涵盖微观经济学和宏观经济学,并以微观经济学为主。主要考察考生对西方经济学的基本范畴、基本原理和基本分析方法的掌握情况,要求考生具备较好的记忆能力、综合分析能力、计算能力和解决实际问题能力等。

- 二、考试的内容及比例(150分)
- 1. 市场供求原理: 需求、供给及均衡价格,需求、供给弹性分析及应用
- 2. 消费者经济行为: 消费者选择、就业和投资决策
- 3. 生产者经济行为: 生产函数、成本函数及企业经营决策分析
- 4. 产品市场结构理论: 完全竞争、垄断竞争、寡头垄断及完全垄断产品市场厂商经营决策 分析
- 5. 市场与政府: 市场失灵与政府经济职能、外部效应、公共物品
- 6. 国民经济核算及简单宏观经济模型
- 7. 国民收入决定: IS-LM 模型
- 8. 公共财政与货币银行
- 9. 失业与通货膨胀理论
- 10. 国际经济

其中: 第1、5部分约占15%; 第2~4部分约占55%; 第6~10部分约占30%。

- 三、试卷题型及比例
- 1. 名词解释、选择题或判断题(约占30%)
- 2. 简答题、论述题(约占40%)
- 3. 计算题(约占30%)

四、考试形式及时间

考试形式均为笔试,考试时间为三小时。

- 五、主要参考教材
- 1. 陈通, 宏微观经济学 (第2版), 天津: 天津大学出版社, 2006
- 2. 陈通, 宏微观经济学习题集, 天津: 天津大学出版社, 2007
- 3. 宋承先、许强,现代西方经济学(微观经济学),上海:复旦大学出版社,2004
- 4. 宋承先、许强,现代西方经济学(宏观经济学),上海:复旦大学出版社,2004 六、专业课无辅导

832 运筹学基础

### 一、考试的总体要求

要求考生应能对运筹学的基本内容有比较系统全面的了解,基本概念清楚,基本理论的掌握比较牢固并能融会贯通,基本方法和运算熟练。

### 二、考试的内容及比例(150分)

1. 线性规划

模型、图解法、单纯形法原理、单纯形表计算、对偶理论、灵敏度分析、运输问题、线性整数规划、线性目标规划模型。

2. 动态规划

基本概念与基本方程、离散型与连续型问题的基本解法、主要应用类型。

3. 图与网络分析

最小部分(支撑)树、最短路、最大流、网络方法在计划中的应用(包括 CPM、PERT、资源与费用优化等)。

4. 排队论

基本概念、M/M/1 系统、M/M/c 系统

5. 存储论

基本概念、确定型与随机型存储模型。

6. 决策论

基本概念、风险型决策问题:先验分析、后验分析、预后分析,包括期望值准则、完全信息期望值、决策树、效用理论。

7. 随机模拟

基本概念与方法、系统的模拟。

8. 对策论

基本概念、矩阵对策的最优纯策略、混合策略。

其中第 1-3 部分的比例一般不低于 50%,第 4-8 部分的比例一般不高于 50%。此外,考生还应对运筹学的整体思想和在管理中的地位,以及在管理中的应用方法(包括常用计算软件,如 Excel、Lindo 的使用)等有基本的了解。

#### 三、试卷题型及比例

- 1. 基本概念、基本理论: 选择、填空、简答。
- 2. 基本理论和方法的应用: 计算题、证明题、综合应用题(包括常用计算软件,如 Excel、Lindo 的使用)。

#### 四、考试形式及时间

考试形式为笔试, 考试时间为三小时。

### 五、主要参考教材

- 1. 吴育华、杜纲编著,管理科学基础(第三版),天津大学出版社,2009
- 2. 杜纲、吴育华编著,管理科学基础学习要点、习题案例、英汉词汇、教学课件,天津大学出版社,2006
- 3.《运筹学》教材编写组,运筹学(第4版),清华大学出版社,2012
- 4. 胡运权主编,运筹学教程(第3版),清华大学出版社,2007
- 5. 胡运权主编,运筹学习题集(修订版),清华大学出版社,1998

- 6. Hamdy A.Taha . Operations Research, 9e. Prentice Hall. 2010
- 7. Frederick S. Hillier . Introduction to Operations Research, 9e. McGraw-Hill. 2009

# 六、专业课无辅导

833 应用经济学

### 一、考试的总体要求

本考试科目为应用经济学科的综合基础理论课程考试。考试内容涵盖微宏观经济学、微观经济学、应用统计学等课程。主要考察考生对应用经济学的基本概念、原理和基本定量分析方法的掌握情况,应用经济理论分析实际经济问题的能力。要求考生具备较好的综合分析能力、计算能力和解决实际问题能力等。

二、考试的内容及比例(150分)

#### 宏微观经济学部分:

- 1. 供求理论:包括需求曲线、供给曲线原理,需求、供给弹性分析及应用
- 2. 效用理论:包括效用函数、边际效用分析,无差异曲线
- 3. 生产与成本理论:包括生产函数、成本函数、企业生产经营决策
- 4. 市场结构: 完全竞争、垄断竞争、寡头垄断及完全垄断市场上企业生产经营决策
- 5. 生产要素市场:包括要素价格的需求分析、要素价格的供给分析
- 6. 均衡论与经济效率:一般均衡理论、经济效率、市场失灵
- 7. 国民收入核算与决定: 包括国内生产总值、国民收入的基本公式、国民收入决定
- 8. 产品市场与货币市场的一般均衡: IS 曲线、LM 曲线、IS-LM 分析
- 9. 宏观经济政策:包括宏观经济政策分析、宏观经济政策实践等应用统计学部分:
- 1. 抽样与抽样分布:包括抽样的基本概念,样本统计量的定义以及正态分布、T分布、分布、F分布、样本平均数、样本方差、样本方差比的抽样分布
- 2. 参数估计:包括参数估计的基本思想、衡量估计量优劣的标准,点估计、总体均值、总体比例区间估计等
- 3. 参数假设检验:包括假设检验的基本概念、总体均值、总体比例、总体方差的假设检验等
- 4. 线性回归分析:包括一元和多元回归分析。参数估计、显著性检验、预测及其他应用等其中:宏微观经济学部分大致占100--110分,应用统计学部分占40--50分。

### 三、试卷题型及比例

- 1. 选择题、概念题或判断题(约30-40分)
- 2. 问答题与分析论述题(约40-50分)
- 3. 计算分析题(约60-70分)

四、考试形式及时间

考试形式为笔试,考试时间为三小时。

### 五、主要参考教材

- 1. 高鸿业主编, 西方经济学(第五版), 中国人民大学出版社, 2011。
- 2. 宋承先,许强,现代西方经济学(第三版),复旦大学出版社,2005。
- 4. 贾俊平,统计学(第四版),中国人民大学出版社,2011。

六、专业课无辅导

834 信息检索

### 一、考试的总体要求

本门专业课主要考察学生对信息资源管理基础知识及信息检索(特别是网络信息检索) 基本概念、基本原理、基本技术和基本方法的了解和认识,以及考察学生运用所学知识解决 实际问题的能力和水平。

### 二、考试的内容及比例(150分)

- 1、信息资源管理基础知识 30~40%
- 2、信息检索基础知识及检索技术,20~30%
- 3、重要信息资源及其检索途径与方法,20~30%
- 4、检索工具与信息资源评价,20~30%

### 三、试卷题型及比例

- 1、填空与选择题: 10~15%
- 2、简答题: 30~35%
- 3、论述题: 50~60%

### 四、考试形式及时间

考试形式为笔试, 考试时间为三小时

### 五、主要参考教材

- 1、《信息资源管理导论》, 孟广均等著, 科学出版社, 2003第2版
- 2、《信息检索导论》叶继元主编,电子工业出版社,2009第2版

### 六、专业课无辅导

### 一 、考试的总体要求

较系统地掌握药品研发、生产、流通、临床使用过程中监督管理所需要的药政法规知识和其它基本知识。熟悉 GAP、GMP、GLP、GCP 和 GSP 的基本概况和内容。了解药事管理学科必备的研究方法和学科发展动态,具有将理论与实践相结合思考问题的能力。

### 二、考试的内容及比例

- 1. 药品监督管理概况与药事组织(10%)
- 2. 药品管理相关法规(包括药品管理法、实施条例、药品注册管理办法)(30%)
- 3. GAP、GMP、GLP、GCP和GSP(20%)
- 4. 中药管理、特殊药品管理、医疗机构药事管理(20%)
- 5. 药品经济性与价格管理(20%)

#### 三、试卷题型及比例

名词解释、判断题、选择题、简答题、综合论述题。名词解释、判断题、选择题三种题型不一定每次命题同时全有,比例占 30%;简答题占 35-45%,综合题占 30-45%。

### 四、考试形式及时间

考试形式:笔试 考试时间:三小时

# 五、主要参考书目:

- 1.《药事管理学》(第5版),杨世民主编,人民卫生出版社,2011.07
- 2.《药事管理学学习指导与习题集》,杨世民主编,人民卫生出版社,2007.08

836 高等代数

### 一、 考试的总体要求

要求考生比较系统地理解高等代数的基本概念和基本理论,掌握代数的基本方法,要求考生具有抽象思维能力、逻辑推理能力、空间想象能力、运算能力、综合运用所学的知识分析和解决问题的能力。

### 二、考试的内容及比例

- 1. 多项式:数域,二元多项式、整除、最大公因式、互素、不可约多项式、因式分解定理、重因式、多项式、函数、复系数与实系数多项式的因式分解,有理系数多项式,多元多项式。
- 2. 行列式: 排列, n 阶行列式的定义, n 阶行列式的性质及计算, 行列式展开(按一行(一列)展开, 拉普拉斯定理)克莱姆法则。
- 3. 矩阵:矩阵的概念,矩阵的运算,逆矩阵、矩阵乘积的行列式、分块矩阵、初等矩阵、初等变换,分块矩阵和初等变换及其应用,矩阵的秩。
- 4. 线性方程组: n 维向量空间, n 维向量的线性相关性, 向量组的极大线性无关组, 向量组的秩和线性方程组的解法、有解的判别原理、解的结构。
- 5. 二次型:二次型及其矩阵表示,二次型的标准型、唯一性、化二次型为标准型,正定二次型。
- 6. 线性空间:集合、映射、线性空间的定义与性质。基、维数与坐标、基变换与坐标变换, 线性子空间,子空间的交与和,直和,线性空间的同构。
- 7. 线性变换的定义及其运算,线性变交换的矩阵,特征值与特征向量,对角矩阵,线性变换的值域与核、不变子空间。
- 8.  $\lambda$ -矩阵:  $\lambda$ -矩阵的概念, $\lambda$  的矩阵在初等变换下的标准型,行列式因子,不变因子,及初等因子,矩阵相似的条件,矩阵的若当标准型及理论推导。
- 9. 欧几里德空间:欧几里德空间的定义与基本性质,标准正交基,欧氏空间的同构和正交变换,子空间及其正交系,正交补,对称矩阵的标准形。向量到子空间的距离,最小二乘法,酉空间。

各部分占10%左右。

- 三、考试的题型及比例
- 1. 填空题 15%。 2. 计算题 40%。 3. 证明题 45%。

四、考试形式及时间

考试形式均为笔试。考试时间为三小时。(满分150分)

837 量子力学

### 考试的总体要求

本门课程主要考察学生对量子理论的基本概念,基本理论和基本方法的全面认识,正确理解和运用能力。

- 一、考试的内容及比例
- 1.掌握波粒二相性的概念,求解简单体系薛定谔方程(包括势阱,谐振子,转子,磁矩在外磁场中的运动等)的方法,波函数的意义.黑体辐射,光电效应,Compton 散射,戴维逊-革末实验,隧道效应的意义(30%)。
- 2.掌握对易关系, 算符运算及测不准关系, 守恒量, 平均值和矩阵元的计算等。理解二维和 三维有心势场的特点。(25%)
- 3.掌握非简并的定态微扰论,会写出常见相互作用的哈密顿量,能够计算波函数至一级修正, 能量至二级修正,理解简并定态微扰论和含时微扰论,了解散射理论(20%)
- 4.掌握单粒子自旋理论和两个粒子的自旋耦合理论,理解全同性概念.对于两个粒子的系统,能够具体写出满足全同性要求的波函数(25%)
- 二、 试卷题型及比例

简答题, 证明题为 40-50%; 计算题 60-50%.

三、 考试形式及时间

考试形式为笔试。考试时间为三小时(满分150)。

839 物理化学

### 一、考试的总体要求

- 1. 对本门课程中重要的基本概念与基本原理掌握其含义及适用范围;
- 2. 掌握物理化学公式应用及公式应用条件。计算题要求思路正确。步骤简明;
- 3. 掌握物理化学实验中常用物理量的测量(包括原理、计算式、如何测量)。能正确使用常用物化仪器(原理、测量精度、使用范围、注意事项)

### 二、考试内容及比例 (重点部分)

1. 气体、热力学第一定律、热力学第二定律 (~22%)

理想气体状态方程、范德华方程、压缩因子定义。

热力学第一、第二定律及其数学表达式; pVT 变化、相变化与化学反应过程中 W、Q、 U、H、S、A与G的计算; 熵增原理及三种平衡判据。

了解热力学基本方程和麦克斯韦关系式的简单应用;克拉贝龙方程及克-克方程的应用。

2. 多组分热力学及相平衡 (~18%)

偏摩尔量、化学势的概念;理想气体、理想稀溶液的化学势表达式;逸度、活度的定义以及 活度的计算。

拉乌尔定律和亨利定律;稀溶液依数性的概念及简单应用。

相律的应用;单组分相图;二组分气一液及凝聚系统相图。

3. 化学平衡 (~10%)

等温方程;标准摩尔反应 Gibbs 函数、标准平衡常数与平衡组成的计算;温度、压力和惰性 气体对平衡的影响;同时平衡的原则。

4. 电化学 (~10%)

电解质溶液中电导率、摩尔电导率、活度与活度系数的计算; 电导测定的应用。

原电池电动势与热力学函数的关系, Nernst 方程; 电动势测定的应用; 电极的极化与超电势的概念。

5. 统计热力学 (~6%)

Boltzmann 分布; 粒子配分函数的定义式; 双原子平、转、振配分函数的计算; 独立子系统能量、熵与配分函数的关系, Boltzmann 熵定理。

6. 化学动力学 (~15%)

反应速率、基元反应、反应分子数、反应级数的概念。

零、一、二级反应的动力学特征及速率方程积分式的应用;阿累尼乌斯公式;对行、平行反应(一级)速率方程积分式的应用;复杂反应的近似处理法(稳态近似法、平衡态近似法)。催化作用的基本特征;光化反应的特征及光化学第一、第二定律。

7. 界面现象与胶体化学(~10%)

弯曲液面的附加压力与 Laplace 方程; Kelvin 方程与四种亚稳态; 润湿与铺展现象及杨氏方程; 化学吸附与物理吸附; Langmuir 吸附等温式。

了解胶体的光学性质、动力性质及电学性质;掌握胶团结构的表示,电解质对溶胶的聚沉作用;了解乳状液的稳定与破坏。

- 8. 实验部分(~10%)
- 1) 恒温槽的调节及粘度测定; 2)液体饱和蒸气压的测定; 3)反应焓的测定; 4)平衡常数的测定(ZnO与 HCl 水溶液反应); 5)凝固点降低法测摩尔质量(萘一苯系统); 6)二元完全互溶液体蒸馏曲线(乙醇一正丙醇系统,阿贝折射仪); 7)二元凝聚系统相图; 8) 原电池热力

学(电位差计的应用); 9)过氧化氢催化分解(KI 催化剂); 10)乙酸乙酯皂化反应(电导仪的应用); 11)表面张力的测定(气泡最大压力法),以上实验的原理及物理量的测量方法

三、试卷题型及比例 计算题 60%,概念题 30%,实验题 10%。

四、考试形式及时间 考试形式均为笔试。考试时间为 3 小时。 840 科学技术史

### 一、考试的总体要求

要求考生比较系统地掌握近、现代科学技术的发展历程、重大科学技术事件发生的历史背景、科学条件、主要科学成果、重要科学代表人物、科学影响及其科学意义等。

### 二、考试的内容及比例

1、近代部分,约占60%

近代自然科学产生的历史条件与社会背景;近代自然科学诞生的标志及主要内容;近代物理 学革命(从哥白尼到牛顿)、近代生物学革命(血液循环理论、细胞学说、进化论)、近代化 学革命(燃烧理论、原子—分子学说、元素周期率)中的科学成果和重要人物及其意义;第 一次技术革命和第二次技术革命的兴起的原因、主要内容及社会意义。

### 2、现当代部分,约占40%

### 三、试卷类型及比例

名字解释: 约占 40%
简答题: 约占 40%
论述题: 约占 20%

四、考试形式及时间

考试形式:笔试。考试时间:3小时。

841 中国哲学史

## 一、 考试的总体要求

要求考生比较系统地掌握中国哲学的基本内容、中国哲学发展的基本线索,并对中国哲学的特点、主要哲学家的思想及其价值有较深入的体认。

- 二、考试的内容及比例
- 1、先秦哲学约占35%;
- 2、汉—唐时期的哲学约占 25%;
- 3、宋元明清时期的哲学约占30%;
- 4、近代哲学约占 10%。
- 三、 试卷类型及比例
- 1、概念、命题解释约占 20%;
- 2、简答、简述题约占40%;
- 3、分析、论述题约占 40%。
- 四、 考试形式及时间

考试形式:笔试;考试时间:三小时。

五、 主要参考教材

北京大学哲学系中国哲学史教研室:《中国哲学史》(第二版),北京大学出版社,2003年。

842 法学专业综合

## 1. 考试的总体要求

要求考生比较系统地掌握商法学、经济法学、知识产权法学、国际经济法学、刑法及环境法的基础知识、基本原理并能够综合运用。能用所学知识分析、解决相关的法律问题。

2. 考试的内容及比例

商法、经济法、知识产权法、国际经济法、刑法、环境法分别约占 1/6。

3. 试卷类型及比例

名词解释: 约占 10%--20% 简答题: 约占 40%--50% 论述题或案例分析: 约占 30%--40%

4. 考试形式及时间

考试形式: 笔试。考试时间: 3小时。

## 一、 考试的总体要求

主要考查考生对辩证唯物主义和历史唯物主义基本原理的掌握情况,以及运用马克思主义的立场、观点、方法,分析和解决问题的能力。考查马克思主义政治经济学的基本理论和观点,深刻认识资本主义生产关系和社会主义生产关系的实质,把握反映社会化大生产客观要求的经济运行的一般规律,全面认识资本运行和社会主义经济运行的基本问题,把握经济全球化发展的大趋势,以及认识在这一趋势下世界经济发展的新变化与中国经济发展面临的新问题,从而科学认识资本主义和社会主义发展的历史进程。要求考生具有马克思主义原理的基本理论素养。

二、考试的内容及比例

马克思主义哲学和政治经济理论的内容各占50%。

- 三、 试卷类型及比例
- 1.《马克思主义哲学》部分: 简答题占 15%; 2、辨析题占 15%; 3、论述题占 20%。
- 2. 《政治经济学》部分: 概念题占 15%; 2. 辨析题占 15% (含计算题); 3.论述题占 20%。

四、考试形式及时间

考试形式:笔试;考试时间:三小时。

844 中共党史

## 一、 考试的总体要求

本门课程主要考察考生对中国共产党领导的新民主主义革命、社会主义革命和社会主义建设的历史进程、基本规律、主要经验和理论的把握、理解和运用的能力。侧重考察分析能力、理解能力和综合能力,特别是理论联系实际的能力。尤其要求考生做到史论结合,学以致用,读史明今,以史鉴今。

## 二、考试的内容及比例

新民主主义革命时期的内容占50%,社会主义革命时期和社会主义建设时期的内容占50%。

## 三、 试卷类型及比例

简答题占50%,综合论述题占50%。

## 四、 考试形式及时间

考试形式均为笔试。考试时间为三小时(满分150分)。

845 汉语

## 一、考试的总体要求

检查考生(1)对古代汉语和现代汉语内部结构的理解力;(2)观察和分析社会生活和实际 工作中的各种语言现象的能力。

# 二、考试的内容及比例 古代汉语占 40%,现代汉语占 60%。

## 三、试卷题型

题型包括填空、选择、判断、简答、论述等。

## 四、考试形式及时间

采用闭卷形式考试,考试时间为180分钟。

846 中国现当代文学

## 一、考试的总体要求

检查考生(1)对现当代文学领域基础知识的系统掌握;(2)运用适当文学理论分析文学文本、文学现象的能力。(3)对导师冯骥才先生的文学艺术及文化思想的认识与理解水平。

# 二、考试的内容及比例 现代文学 30%,当代文学 70%。

## 三、试卷题型

名词解释、简答题、论述题、文本分析等。

## 四、考试形式及时间

采用闭卷形式考试,考试时间为180分钟。

#### 一、考试的总体要求

本科目考试是外国语言学及应用语言学专业硕士研究生入学的专业基础测试,旨在考查考生对语言学基本理论和语言分析基本方法的掌握程度、对国内外影响较大的翻译理论、流派、代表人物及其主要观点的掌握程度、语言分析的能力、从事语言研究所需要的人文和科学素养以及从事学术研究的能力。

## 二、考试内容

本科目考试内容主要涵盖语言理论、语音、音系、构词-形态、句法、语义、社会语言学、语用学、第一和第二语言习得、语言的历史发展及主要流派等领域的基础知识、基本理论和基本方法以及对语言结构和语言现象的分析;国内外影响较大的翻译理论、流派、代表人物及其主要观点,并能根据某一翻译观点提出自己的见解或对某一译文做出自己的评论。

## 三、考试题目类型:

- 1、外国语言学及应用语言学的基本知识
- ①名词解释
- ②简答题
- ③论述题
- 2、翻译实践
- ①名词解释
- ②短文翻译 (英译汉、汉译英)
- 四、考试形式及时间

本考试采用闭卷书面考试的形式。试题语言为英语。

849 教育学

- 一、考查目标
- 1. 要求学生准确识记教育学的基础知识;
- 2. 正确理解教育学的基本概念和基本理论;
- 3. 能够运用教育学的基本理论分析教育理论与实践问题。
- 二、考试形式和试卷结构
- (一) 试卷总分及考试时间

本试卷满分为150分,考试时间为180分钟。

(二)考试方式

考试方式为闭卷、笔试。

(三) 试卷题型结构及各部分所占比例

名词解释 6小题,每小题5分,共30分

6 小题, 每小题 10 分, 共 60 分 简答题

论述题 2 小题,每小题 20 分,共40 分 1 小题,每小题 20 分,共 20 分

三、考试内容及比例

分析题

第一部分:教育基本理论(80%)

(一)教育学概述

- 1. 教育学的研究对象
- 2. 教育学的研究任务
- 3. 教育学的产生与发展
- (二)教育的概念、教育目的及功能
- 1. 教育的概念
- 2. 教育目的
- 3. 教育的结构与功能
- (三)教育与社会发展
- 1. 关于教育与社会关系的主要理论
- 2. 教育的社会制约性
- 3. 教育的社会功能
- 4. 当代社会发展对教育的需求与挑战

(四)教育与人的发展

- 1. 人的身心发展特点及其对教育的制约
- 2. 人的身心发展的主要影响因素
- 3. 学校教育在人的身心发展中的作用

(五)教育制度

- 1. 教育制度的概念
- 2. 学校教育制度
- 3. 现代教育制度改革

(六)课程

- 1. 课程的概念与课程理论
- 2. 课程类型
- 3. 课程编制
- 4. 课程改革

## (七)教学

- 1. 教学的概念与教学理论
- 2. 教学过程
- 3. 教学模式
- 4. 教学原则
- 5. 教学组织形式
- 6. 中小学常用的教学方法
- 7. 教学工作的基本环节
- 8. 教学评价及其改革

## (八) 教师与学生

- 1. 教师: 概念与类别、教师劳动的特点、教师专业发展的内涵与途径
- 2. 学生: 学生及学生观、学生群体
- 3. 师生关系:特点、类型、良好师生关系的建立

## (九)德育

- (十)美育
- (十一) 体育
- (十二) 学校管理
- (十三)教育理论的新发展

## 第二部分: 职业技术教育学(20%)

- (一) 职业技术教育的概念、特点与功能
- (二) 职业技术教育的课程
- (三) 职业技术学校的职业道德教育
- (四)职业技术学校的实习教学
- (五) 职业指导

## 考试参考书:

- 1. 全国十二所重点师范大学联合编写:《教育学基础》(第 2 版),教育科学出版社,2008年12月;
- 2. 刘春生、徐长发主编:《职业教育学》,教育科学出版社,2002年。

850 暖通空调

## 一、考试的总体要求

深刻理解暖通空调制冷课程的基本原理、基本概念,掌握相关的计算分析方法,能够运用所 学的知识对暖通空调制冷设备及系统的特性进行计算分析。

## 二、考试的内容及比例

第一部分 空气调节 (90分)

## (一)考试范围::

- 1、湿空气的物理性质及 i-d 图;
- 2、人体热舒适基本原理
- 3、空调负荷计算与送风量;
- 4、空气的热湿处理;
- 5、空气调节系统;
- 6、室内气流组织
- 7、空调系统的运行调节;
- 8、空调系统的测定与调整

## (二)考试要求:

- 1、熟悉湿空气的物理性质,掌握湿空气含湿量、水蒸汽分压力、饱和水蒸汽分压力、焓、湿球温度、相对湿度、露点温度等各个状态参数的计算方法,能熟练应用 I-d 图表示湿空气状态及状态变化过程。
- 2、了解人体热舒适的评价指标,建筑室内环境对人体热舒适的影响,与人体热舒适相关的 人体散热机理。
- 3、了解确定空调室内外计算参数的原则和方法,了解太阳辐射热对建筑物的热作用及综合温度的概念,了解得热量及冷负荷的概念和区别,了解设备、人员、灯光等室内热源散热、散湿及其形成的冷、湿负荷,熟练掌握确定空调房间送风量的方法。
- 4、了解空气与水直接接触时的热湿交换原理,了解用喷水室和表面式换热器处理空气的方法及两者的不同之处,了解空气的其他加热、加湿及减湿方法。
- 5、掌握空调系统新风量的确定方法和系统空气平衡的原理,熟练掌握普通集中式空调系统(一次、二次回风系统)的空气处理过程及在 I-d 图上的表示方法,熟悉风机盘管加新风空调系统的空气处理过程及在 I-d 图上的表示方法,了解变风量系统、局部空调机组、水源热泵等空调系统的工作原理和工作过程。
- 6、室内气流组织的评价方法,与室内气流组织设计相关的理论及实验方法,风口性能分析原理及模拟方法。
- 7、能够论述普通集中式空调系统在在室内热湿负荷变化时和室外空气状态变化时的系统的调节方法,了解风机盘管系统、变风量系统、局部空调机组、水源热泵等其它空调形式在在室内热湿负荷变化时和室外空气状态变化时的调节方法。
- 8、了解空调系统动力工况和热力工况的测定与调整方法,能够对空调系统调试和运行中出现的问题进行初步的分析。

参考书: 赵荣义, 范存养, 薛殿华, 钱以明. 空气调节(第四版). 北京:中国建筑工业出版 社, 2009. 第二部分 供热工程或者制冷技术任选一门 (60分) 供热工程:

- (一)考试范围
- 1、建筑供热负荷的计算
- (1) 室外气象参数的确定、室内设计参数确定的原则;
- (2) 建筑物供热负荷计算内容和计算方法;
- (3) 墙体热阻的计算及原则;
- (4) 供暖设计热负荷的概算方法;
- (5) 热负荷图的绘制方法和意义;
- (6) 年耗热量、建筑的耗热量指标与耗煤量指标的计算;
- (7) 建筑节能的一般方法。
- 2、采暖设备的计算与选择
- (1) 房间供热设备的种类和特点;
- (2) 热媒的种类和特点;
- (3) 散热器传热计算和选择;
- (4) 散热器热工性能实验方法:
- (5)辐射采暖(包括地板辐射采暖)的形式和原理。
- 3、采暖系统
- (1) 采暖系统(包括分户计量热水采暖系统形式)的组成和连接方式;
- (2) 采暖系统水力计算原理和方法;
- (3) 循环水泵的匹配方法、水泵性能曲线;
- (4) 系统的定压方式和定压原则;
- (5) 水压图的原理及应用;
- (6) 系统特性曲线和工作点。
- 4、采暖系统的运行与调节
- (1) 系统运行调节的方法和原理;
- (2) 热水采暖系统的水力工况分析和计算;
- (3) 热水采暖系统的水力稳定性分析和计算;
- (4) 采暖系统的运行与节能。
- (二)考试要求
- 1、 建筑供热负荷的计算

本部分的重点是掌握建筑物热负荷计算基本概念及基本公式,掌握热负荷的组成及影响因素和修正方式和方法,掌握墙体传热计算和最小热阻的计算和确定,掌握供暖热负荷的概算方法和热负荷图的绘制方法与意义,掌握一般的建筑节能方法及耗热量指标、耗煤量指标的计算,了解民用建筑的节能设计标准。

2、采暖设备的计算与选择

本部分的重点是掌握各种采暖方式所使用的散热设备的热工计算方法和原理性计算公式,能够对不同散热器的特点进行科学和系统的分析,掌握散热器热工性能实验方法和原理。

## 3、采暖系统

掌握各种采暖系统形式(包括分户计量热水采暖系统形式)和工作原理,重点掌握管网系统的水力计算方法、系统定压方式、水压图概念和应用、系统工作点的确定。

4、采暖系统的运行与调节

掌握采暖系统负荷变化规律、系统运行和调节的方法,掌握采暖系统水力工况及水力稳定性 分析和计算,平衡调试的内容和方法,对系统运行调节与建筑节能的关系有一定的了解。 参考书: 贺平、孙刚. 供热工程(第四版). 北京: 中国建筑工业出版社, 2009. 制冷技术:

## (一) 考试范围::

- 1、蒸气压缩式制冷的热力学原理;
- 2、制冷剂的性质及制冷剂替代:
- 3、制冷压缩机的工作原理及性能;
- 4、制冷系统其它主要设备和辅助设备;
- 5、制冷系统及其工作特性
- 6、吸收式制冷基本原理与设备:

## (二)考试要求:

- 1、掌握逆卡诺循环、蒸气压缩式制冷理论循环及其改善措施;了解劳仑兹循环与跨临界制冷循环。
- 2、熟悉对制冷剂的要求、制冷剂的分类和选择原则,以及常用制冷剂的特性;熟悉制冷剂的溶油性、溶水性对制冷机性能的影响;深刻了解 CFC 和 HCFC 存在的问题,替代制冷剂的情况。
- 3、熟悉活塞式压缩机的工作原理及性能计算方法;了解回转式压缩机的工作原理和主要特点;对离心式压缩机的特性曲线和喘振现象有深刻认识;掌握内在参数对制冷系统性能影响的分析方法。
- 4、掌握冷凝器、蒸发器的种类、基本构造、工作原理和特点;掌握热力膨胀阀的种类、基本构造、工作原理和特点;了解其它类型膨胀阀的特点和适用对象;了解辅助设备的作用和工作原理。
- 5、掌握蒸气压缩式制冷系统的典型流程,及氨系统和氟利昂系统的主要特点;了解空调用制冷机组的主要产品分类;掌握影响蒸气压缩式制冷系统性能的因素和分析方法;掌握蒸气压缩式制冷系统的性能调节方法和常见的制冷量不足的原因。
- 6、了解吸收式制冷基本原理与设备

参考书: 贺平、孙刚. 供热工程(第四版). 北京: 中国建筑工业出版社,

三、试卷类型及比例

试卷满分为 150 分, 其中:

1、填空题及选择填空题 占30分

2、问答题 占90分

3、计算题 占 30 分

四、考试形式及时间

笔试; 3小时

#### 五、主要参考教材

- 1、 赵荣义, 范存养, 薛殿华, 钱以明. 空气调节(第四版). 北京: 中国建筑工业出版社, 2009.
- 2、 贺平, 孙刚, 王飞, 吴华新. 供热工程(第四版). 北京: 中国建筑工业出版社, 2009.
- 3、 彦启森,石文星,田长青. 空气调节用制冷技术(第四版). 北京:中国建筑工业出版社,2010.

#### 一、环境分析监测部分

#### (一) 考试的总体要求

- 1. 基本掌握环境分析监测的基本理论、基本方法和基本技能;
- 2. 一般了解环境分析监测的数据处理和定量分析的基础理论:
- 3. 熟练掌握滴定分析法的基本原理、定量计算规则和在环境分析监测中的应用;
- 4. 熟练掌握仪器分析法的基本原理和定性、定量依据;
- 5. 基本掌握仪器分析法的主要测定条件和方法,以及在环境分析监测中的应用;
- **6.** 熟练掌握环境要素监测中的水和废水污染监测、大气和废气污染监测的测定原理、测定方法及主要测定指标;
- 7. 一般了解固体废物、土壤、噪声和生物污染监测等其它环境要素污染监测的基本知识。 (二)考试的内容及比例
- 1. 环境分析监测概论(10分)

主要包括内容:

- 1) 环境分析监测的特点和任务;
- 2) 环境优先污染物和优先监测:
- 3) 环境基准与环境标准。
- 2. 环境分析监测定量分析基础知识(5分)

主要包括内容:

- 1) 定量分析的误差及数据处理;
- 2) 定量分析监测中常用的计算规则;
- 3. 滴定分析法及其在环境分析监测中的应用(30分)

主要包括内容

- 1) 酸碱滴定法、络合滴定法、沉淀滴定法和氧化还原滴定法的基本原理;
- 2) 上述四种方法涉及的计算、滴定曲线、指示剂及变色原理、干扰和抑制方法;
- 3)上述四种滴定方法在环境分析监测中的应用(主要污染指标的测定)。
- 4. 仪器分析法及其在环境分析监测中的应用(30分)

主要包括内容

- 1) 紫外-可见光分光光度法的基本原理、测定条件、测定方法和环境分析监测中的应用;
- 2) 原子光谱分析法的原理、特点、定量和定性分析方法:
- 3) 电位分析法的原理、相关基本概念、离子选择性电极法和在环境分析监测中的应用;
- 4) 极谱分析法的原理、特点、定性定量的依据和在环境分析监测中的应用;
- 5) 色谱分析法的基本理论、气相色谱分析法和高效液相色谱分析法的主要特点。
- 5. 环境要素监测(15分)

主要包括内容

- 1) 监测方案的制定;
- 2) 试样的采集、制备和运输的原则、方法和设备;
- 3) 环境监测和污染物的时空关系;
- 4) 水和废水环境监测中主要指标的含义、测定的原理、过程和设备;
- 5) 大气和废气环境监测中主要指标的含义、测定的原理、过程和设备;
- 6) 其它环境要素的监测技术和方法。
- (三) 试卷题型及比例

填空、选择、判断题1~2/9简答、论述题2~3/9计算、推导题4~6/9

(四)参考书

孙宝盛、单金林、邵青 编 环境分析监测理论与技术(第二版)化学工业出版社 2007年

## 二、环境工程原理部分

(一) 考试的总体要求

- 1. 全面掌握、理解环境污染防治工程及其他污染防治工程中涉及到的共性的工程学基础、基本过程和现象以及污染防治装置的基本原理。
- 2. 灵活运用环境工程各种分离技术的基本内容,且具有熟练的运算能力、分析问题和解决问题的能力。
- (二)考试的内容及比例
- 1. 沉降(约占8分)

沉降的基本概念: 沉降分离的原理和类型; 流体阻力与阻力系数 重力沉降: 基本概念; 沉降速度的计算; 重力沉降设备-降尘室 离心沉降: 基本概念; 旋流器的工作原理; 离心沉降设备-旋风分离器

2. 过滤(约占10分)

过滤的基本概念;表面过滤的基本理论;过滤过程的计算(恒压过滤的计算、恒速过滤的计算);深层过滤的基本理论;过滤设备

2. 吸收(约占12分)

吸收的基本概念;气一液相平衡与亨利方程;亨利方程的应用;双膜理论;化学吸收的基本概念;吸收过程的工艺计算(物料衡算、操作线方程、吸收剂用量、填料层高度计算等)。 3. 吸附(约占15分)

吸附的基本概念与原理;常用吸附材料结构与性能,制备以及应用特点;吸附平衡模型;动力学原理;吸附工艺原理,工艺计算(物料衡算、操作线方程)

4. 膜分离(约占15分)

膜分离的基本概念与原理;各种膜分离工艺原理及应用;膜材料结构与性能;膜分离操作计算

(三) 试券的题型及比例

填空、选择、判断题3/6简答、论述题1/6计算、推导题2/6

(四)参考书

胡洪营、张旭、黄霞、王伟合编 环境工程原理(第二版) 高等教育出版社 2011年

#### 三、考试的形式及时间

笔试。三小时(150分)

#### 四、说明

考试时请带有对数计算功能的计算器

852 环境学

## 一、 考试的总体要求

考察学生对环境科学的基本知识、概念、原理和方法的掌握程度,及学生运用所学知识分析问题和解决问题的能力。

- 二、考试的内容及比例
- 1) 当代中国与世界环境问题(10~20%)

过去和现在我国与世界面临的重大环境问题和环境事件,及其形成的原因、危害、主要表现和防治措施。

2) 生态学基础(5~15%)

生态学的基本概念和原理,生态系统的内部组成结构及其相互依存关系,生态系统能量流动过程、物质循环过程,生态平衡的定义、特点及其维持机理,生态学在环境保护中的应用。

- 3) 可持续发展的基本战略思想(5~10%) 可持续发展战略的由来和发展趋势,实施可持续发展战略的重大措施。
- 4) 环境管理(5~15%)

环境管理基本概念、基本理论,基本职能和内容,我国环境管理的发展趋势、环境管理制度。

5) 能源、资源与环境保护(10~20%)

资源的基本概念和分类,能源、资源(水资源、土地、生物、矿产等)的开发利用对环境的影响,我国和世界能源、资源的主要特点及其所面临的问题。能源、资源的合理开发利用及其保护。

6) 环境污染及其防治(包括大气、水和固体废弃物)(30~40%)

大气的组成、分层结构、大气边界层特征、大气稳定度等基础知识,大气污染及其类型、 大气污染的危害及其控制。

固体废弃物的定义、分类、主要特点和危害,固体废弃物的主要处理、处置和综合利用方法。

水质、水质指标与标准,水体污染、水体自净机理与水环境容量,水污染防治技术与方法。

三、 试卷类型及比例

名词解释 20%

简答 20%

论述 60%

四、 考试形式及时间

均为闭卷笔试,考试时间为3小时

五、主要参考教材

环境保护概论(修订版), 林肇信等 主编, 高等教育出版社, 1999 环境学导论(第三版), 何强 等 编著, 清华大学出版社, 2004

#### 一、考查目标

全日制攻读教育硕士专业学位入学考试教育管理原理与实务科目考试内容以教育管理 学为主,要求考生系统掌握教育管理学的基本知识、基础理论和基本方法,能顾运用相关理 论和方法分析、解决教育管理实际问题。

- 二、考试形式与试卷结构
  - (一) 试卷成绩及考试时间

本试卷满分为 150 分, 考试时间为 180 分钟。

(二) 答题方式

答题方式为闭卷、笔试。

(三) 试卷题型结构

简答题: 3 小题,每小题 10 分,共 30 分

管理案例分析题: 6 小题, 每小题 20 分, 共 120 分

#### 三、考查范围

- (一) 考查目标
- 1. 系统掌握教育管理学的基础知识、基本概念和基本理论。
- 2. 理解教育管理的任务、过程、原则和方法。
- 3. 能运用教育管理的基本理论和方法来分析和解决教育的现实问题。
- (二)考查内容
- 1.教育管理学的性质和特点
- (1) 教育管理学的学科性质
- (2) 教育管理学内容的三个层次

教育事业的管理,对学校和其他教育组织的管理,学校管理者的自我管理

- 2.现代教育管理的理论基础
- (1) 教育管理的基本概念管理,教育管理,教育管理现代化
- (2) 现代教育管理的理论基础

行政学、法学理论、"科学管理"理论、科层管理理论、行为科学管理理论、新公共管理理论、行政伦理学对现代教育管理理论的影响

- 3.教育行政体制
- (1) 教育行政体制及其类型
- (2) 我国的教育行政体制及其改革。
- (3) 外国教育行政体制改革

美国、英国、法国、德国、俄罗斯、日本等国的教育行政体制改革趋势及启示

- 4.教育行政组织及教育行政机关工作人员
- (1) 教育行政组织及其职能我国教育行政组织及其职能
- (2)教育行政机关工作人员
- (3) 提高教育行政组织的效率和效益
- 5. 教育政策与法律
- (1) 教育政策
- (2) 教育法与教育行政
- (3) 教育法体系
- (4) 教育法的制定与实施

- 6.教育计划
- (1) 教育计划
- (2) 教育预测
- (3) 教育计划的结构
- (4) 教育计划的编制步骤及方法
- 7.教育督导
- (1) 教育督导的基本职能与具体任务
- (2) 教育督导机构
- (3) 教育督导评估
- 8.教育财政
- (1) 教育财政体制
- (2) 教育筹资
- (3) 教育支出
- 9.教育课程行政
- (1) 教育课程的涵义
- (2) 教育课程的内容构成
- (3) 教育课程实施的指导
- 10.教师人事行政
- (1) 教师职业的专业性
- (2) 教师的任用
- (3) 教师的在职培训
- (4) 教师的工资
- (5) 教师考核制度
- 11.学校管理
- (1) 学校工作决策与计划的制订
- (2) 学校发展战略规划
- (3) 学校计划执行阶段的管理
- (4) 学校的目标管理
- (5) 学校组织建设
- (6) 学校质量管理、评价与控制
- (7) 学校公共管理管理
- 12.学校领导
- (1) 学校领导者
- (2) 领导方式与领导的有效性
- (30 学校领导班子的基本素质

## 主要参考书目

陈孝斌、高洪源,教育管理学,北京师范大学出版社,2008

(科目:现代教育技术基础)

#### 一、考查目标

要求考生能较为全面系统地掌握现代教育技术的基本概念与基础知识;掌握教育技术的基本技能和方法,掌握多媒体组合教学设计的过程和方法,并能在此基础上加以灵活运用,具备较强的分析与解决教学实际问题的能力。

#### 二、考试形式与试卷结构

(一) 试卷成绩及考试时间

本试卷满分为150分,考试时间为180分钟。

(二) 答题方式

答题方式为闭卷、笔试。

(三) 试卷题型结构

名词解释题: 6小题,每小题 5分,共30分

简答题: 4小题,每小题 10分,共40分

分析论述题: 4小题,每小题 20分,共80分

## 考查内容

- (一)教育技术学概述
- 1.现代教育技术的产生与发展、AECT的由来:现代教育技术的发展趋势。
- 2.现代教育技术的定义、研究对象和范围、功能和作用;了解我国"现代教育技术"概念的发展脉络。
  - (二)教育技术的理论基础
- 1. 教育技术学的学习理论基础,及其对现代教育技术的指导意义,包括行为主义、认知主义、建构主义。
  - 2. 视听教育理论及其对教育的启示; 教学信息的传播及其制约传播效益的因素。
  - 3. 技术主义、人文主义对教育的启示; 技术主义与人文主义的协调关系。
  - (三)现代教育技术媒体概述
  - 1.现代教育技术媒体分类、特性与教学功能。
  - 2.媒体的本质及其效果原理,如:重复作用原则、最小代价原则。
  - (四)视听媒体与教学应用
  - 1.光学投影媒体及其教学运用,电声媒体及其教学运用。
- 2.电视教材的类型、电视教材的编制、电视节目的拍摄技巧(镜头的运动技巧和组接技巧); 电视教材的评价指标。
  - 3.电视的教育应用。
  - (五) 多媒体计算机技术与教育应用
  - 1.多媒体计算机辅助教学的特点、作用、基本原理。
  - 2.多媒体技术的概念,区分多媒体、多媒体技术、超文本、超媒体的概念。
  - 3.多媒体技术的主要特征及主要技术,多媒体技术系统构成及其教学应用。
  - (六)教育技术应用系统与教学应用
  - 1.微型教学系统的概念、计算机网络基本概念; 计算机网络的分类、系统构成、Internet

提供的服务、IP 与域名地址; 常见英语缩略词的中文意义, 如: CAI、ICAI、MCAI、TCP/IP、HTTP、WWW、HTML、URL、FTP、BBS、ISP、Telnet 等。

- 2.多媒体综合教室、语言实验室、微型教学系统、学习资源中心、教育电视系统和卫星 广播电视系统以及计算机网络系统的种类、功能及其在教学中的运用。
  - (七) 多媒体教学软件的开发
  - 1. 多媒体教学软件的设计和开发过程,如:需求分析、脚本设计、软件编码、测试评价。
  - 2.教学课件素材采集与制作,如:图片的类型、来源与制作;声音、视频文件的格式。
- 3.教学演示文稿的制作过程与方法,如:教学演示文稿的制作过程;多媒体对象的插入、 超级链接以及声音播放的设置:自定义动画及切换效果设置
  - (八) 教学设计概述
  - 1.教学设计的基本概念, 教学设计的系统特征与本质。
- 2.常见的教学设计理论,如加涅的信息加工理论、瑞格鲁斯的细化理论、梅瑞尔的成分显示理论等。
- 3.常见的教学设计过程模式,如第一代教学设计代表模式"肯普模式"、第二代教学设计 代表模式"史密斯-雷根模式"等。
- 4. 教学设计过程和方法,如以教为主的教学设计、以学为主的教学设计、学教并重的教学设计等。
  - (九) 教学设计的基本过程和方法
- 1. 教学设计的基本环节和流程,如学习者分析、教学内容分析、教学目标制定、教学策略的确定、教学媒体的选择与组合、教学过程设计等。
- 2.教学设计的关键环节与概念,包括:学习者的一般特征和特殊特征分析,学生智力差异与学习、认知风格差异与学习;教学目标的功能分析及其分类系统;教学策略的概念与分类;教学媒体选择的依据和程序、教学媒体最佳作用点的把握。
  - (十)信息技术与课程整合
- 1.信息技术与课程整合的概念、内涵、途径与方法,信息技术与课程整合对我国教育深 化改革的重要意义。
- 2.信息技术与课程整合的理论基础,信息技术与课程整合的教学设计内容、过程、模式与方法。
  - (十一) 现代教育技术及其评价
  - 1.现代教育技术教学评价的功能、种类、评价的程序与过程。
  - 2.现代教育技术教育评价的准备环节、实施环节和总结环节。
  - (十二)现代教育技术的未来与发展
- 1.教育技术的当前热点问题,包括 MOOCs、翻转课堂、移动学习、云计算与云教育、数字校园与智慧校园、电子书包等应用现状。
- 2.现代教育技术的未来发展趋势,包括新涌现的技术在教育领域中的应用前景与预测,教育领域中学习变革的未来走向等。

## 主要参考书

- 1.何克抗、李文光编著:《教育技术学》,北京师范大学出版社,2009年。
- 2.李芒、张志祯主编:《现代教育技术》,中央广播电视大学出版社,2011年。

全日制攻读教育硕士(现代教育技术)专业学位

#### 入学考试大纲

(科目:程序设计语言)

## 一、考查目标

要求考生比较系统地掌握 C 语言的基础理论和基本知识, 熟练掌握 C 语言的基本语法, 熟悉结构化程序设计的编程思想, 能运用 C 语言设计应用程序以解决实际问题。要求学生了解面向对象的程序设计方法, 掌握 C++语言的基本概念, 语法及编程方法。

## 二、考试形式与试卷结构

(一) 试卷成绩及考试时间

本试卷满分为150分,考试时间为180分钟。

(二) 答题方式

答题方式为闭卷、笔试。

(三) 试卷题型结构

选择题: 10 小题, 每小题 3 分, 共 30 分

填空题: 10 小题,每小题 2 分,共 20 分

程序分析题: 4小题,每小题 6分,共24分

程序填空题: 4小题,每小题 6分,共24分

程序设计题: 4 小题, 每小题 12~16 分, 共 52 分

#### 三、考查范围

- (一)数据类型、运算符和表达式
- 1. 常用的进位制及其转换
- 2. 数与字符在计算机内存中的表示
- 3. 常量
- 4. 变量
- 5. 常用的运算符与表达式
- 6. 基本输入/输出操作
- (二) 算法与程序设计基础
- 1. 算法的概念与特点
- 2. 算法的常用表示方法
- 3. 结构化程序设计方法
- 4. C语句概述
- 5. 选择结构程序设计
- 6. 循环程序设计
- 7. 综合程序设计应用

(三) 函数

- 1. 函数的定义
- 2. 函数的调用与返回值
- 3. 函数的传数传递方式
- 4. 函数的嵌套与递归
- 5. 变量的作用域
- 6. 变量的生存期
- 7. 内部函数与外部函数
- 8. 编译预处理命令

(四)数组类型与指针类型

- 1. 一维数组的定义与使用
- 2. 二维数组的定义与使用
- 3. 数组的应用(排序,查找)
- 4. 字符数组
- 5. 指针的定义与使用
- 6. 指针参数

(五)结构类型与联合类型

- 1. 结构类型的定义
- 2. 结构数组
- 3. 动态链表

(六) 文件

- 1. 文件概述
- 2. 打开文件与关闭文件
- 3. 文件的读与写

(七)面向对象技术与 C++

- 1. C++概述
- 2. 重载函数
- 3. 面向对象的基础知识
- 4. 类和对象
- 5. 构造函数
- 6. 析构函数
- 7. 继承与派生类

## 主要参考书:

- 1. 谭浩强著 《C程序设计第三版》 清华大学出版社
- 2.《C++程序设计》, Y. Daniel Liang 著, 王刚 刘晓光 刘璟译, 机械工业出版社

855 产品设计

## 一、考试的总体要求

要求掌握产品设计的基本思想、理念、设计方法和基本技能,同时考察设计中的创新能力,发现问题、分析问题、解决问题的能力及设计审美和表达能力。

- 二、考试的内容及比例
- 1. 设计理念、定位准确(20%)
- 2. 设计创意、构思新颖(35%)
- 3. 设计表达全面、准确、深入(35%)
- 4. 设计构图合理、说明性强(10%)
- 三、试卷题型及比例
- 单一命题创作(100%)
- 四、考试形式及时间

考试形式为笔试,考试时间为3小时(满分150分)。

856 分子生物学

## 一、考试的总体要求

要求考生了解分子生物学的基本概念、理论、研究手段与方法,具有较系统的分子生物学理论基础与实践技能,了解分子生物学发展的前沿和动态。

## 二、考试内容

- 1、生物大分子的化学组成、结构层次和结构及其功能。
- 2、原核和真核生物染色体结构的基本特征, DNA 复制的分子机制和基因组的复杂性。基因组学(结构基因组学、功能基因组学和比较基因组学)的基本概念、研究方法和发展趋势。
- 3、基因表达与调控,包括基因表达调控的生物学意义、基因表达的有序性、内外环境因素对基因表达的影响、基因表达调控的组织结构、核小体与化学修饰在基因表达调控中的作用、与转录调控相关的 DNA 和蛋白质(顺式元件、反式因子)、DNA-蛋白质识别和结合的结构特征、原核及真核基因转录调控模式及蛋白质合成过程等。
- 4、DNA 损伤、修复和重组,包括 DNA 损伤的原因、类型、修复和重组机制。
- 5、重组 DNA 技术,包括分子克隆操作常用的工具酶的特性、分子克隆常用的 DNA 载体的特点和用途、分子克隆的基本程序、基因敲除和定点诱变技术、基因组文库和 cDNA 文库的构建方法和用途。
- 6、瘤相关基因,包括癌基因的概念、癌基因的分类与功能、原癌基因激活的几种常见方式、 抑癌基因的概念和重要的抑癌基因的功能。
- 7、分子生物学常用技术,包括核酸和蛋白质的凝胶电泳(原理、方法、种类和影响因素)、分子杂交(原理、种类和方法)、PCR的原理和方法以及 DNA 测序的原理和方法。
- 8、细胞信号传导,包括细胞信号传导的基本概念、信号分子的分类、细胞表面受体的分类和结构特点及在细胞信号传递中的作用、涉及第二信使 cAMP、cGMP、IP3、DG、Ca2+的信号转导通路的组成、作用机制及其功能。

#### 三、考试的题型及比例

试题包括概念题及问答题。概念题分为名词解释、填空和选择题三类,约占总分的 30~40%;问答题一般为 6-7 题,约占总分的 60~70%。

#### 四、考试形式及时间

考试形式为笔试。考试时间为3小时,满分150分。

## 一、 考试的总体要求

要求考生系统掌握高分子化学的基本知识、基本概念、能够写出主要聚合物的结构式并熟悉其性能;熟悉各种聚合反应的机理、反应动力学、聚合产物结构特征、分子量及其分布的控制等;了解典型聚合物的主要工业实施方法及应用特点;熟悉高分子化学反应。考生应具备综合运用高分子化学知识分析问题、解决问题的能力,能够对给出的实验现象或数据作出合理的分析及解释。

## 二、考试的内容及比例

- 1、 熟练掌握有关的基本概念如聚合物、单体、聚合物的重复单元、结构单元、聚合度、高分子的链结构, 热塑性聚合物、热固性聚合物, 聚合物的各种相对分子质量及其表示方法, 聚合物的分类和命名。
- 2、自由基聚合和自由基共聚合

自由基聚合的单体和引发剂;自由基聚合反应的机理及特征;自由基聚合反应微观动力学;温度对聚合速率的影响;聚合物动力学链长和聚合度的调整;阻聚剂和阻聚作用;自由基聚合热力学及其单体结构的影响。

共聚物的类型和命名;二元共聚物组成方程、组成曲线;竞聚率及其影响因素;竞聚率的测定;共聚物组成的控制方法及与转化率的定性关系;单体和自由基的活性;Q-e概念。

#### 3、离子型聚合和配位聚合

离子型聚合的单体及引发体系;离子型聚合反应的机理及动力学;离子型聚合的影响因素;阳离子型聚合相对分子质量的控制;活性阴离子聚合及其应用。

开环聚合机理;环状单体的聚合活性;工业上重要的开环聚合。

配位聚合的定义和特点;引发剂的类型和作用;聚合物的立构规整度;Ziegler-Natta引发剂的组成、性质和反应,第三组份的作用;配位聚合反应机理。

以上内容占 50-70%

#### 4、聚合方法

本体聚合、溶液聚合、悬浮聚合、乳液聚合实施方法及特点;界面缩聚体系的基本组份;悬浮聚合分散剂及分散作用;乳液聚合的主要组份及其作用;乳液聚合机理及聚合动力学;上述各种不同聚合方法中聚合主要工艺参数及相应聚合物结构及性能的控制方法。

## 5、逐步聚合反应

线型缩聚与成环倾向,线型缩聚反应机理及动力学,影响线型缩聚物聚合度的因素和控制方法;线型逐步聚合原理和方法的应用及重要线型逐步聚合物;体型缩聚与单体官能度,无规预聚物和结构预聚物的制备,凝胶化作用和凝胶点的预测。

### 6、聚合物的化学反应

聚合物的反应活性、特征及其影响因素;聚合物的相似转变;聚合度增大的化学方法;聚合物的降解与老化;功能高分子材料化学。

以上内容占 30-50%

#### 三、 试题类型及比例

- 1、填空题: 20~40% 2、判断题和选择题: 10~30% 3、简答题: 30~40%
- 4、计算题: 30~50%; 5、讨论题: 10~30%

#### 四、考试形式及时间考试形式为笔试。考试时间为三小时。

#### 一、考试总体要求

掌握微生物的基本知识(概念、分类、形态结构、代谢、生长繁殖等),掌握微生物在食品制造中应用的基本理论,掌握微生物与食品污染、食品腐败、食源性疾病关系的基本理论。了解微生物的遗传变异及在基因工程中应用的基本理论。了解食品中常见微生物。掌握细菌及真菌的形态学检查、培养基制备、消毒灭菌、培养技术、生化试验、菌种保藏等基本方法。二、考试的内容及比例

1. 微生物主要类群的形态和细胞结构(15%):

掌握各种原核与真核微生物的主要形态特征,细胞结构和化学组成特征,能够根据菌体的形态和结构特征区分不同类型的微生物。

2. 微生物的繁殖方式及生活史(5%)

掌握上述各类微生物的一般繁殖方式和生活史。

3. 食品中常见微生物的形态、生理生化特征(5%)

掌握食品中常见细菌、霉菌、酵母的形态、生理和生化特征,它们与食品腐败、食品安全和食品生产的关系。

4. 病毒(5%)

了解病毒的形态结构、化学组成、增值方式和生活周期特点,了解病毒与食源性疾病的关系。

5. 微生物的营养(5%)

掌握微生物营养、营养方式和培养的基本概念;了解微生物培养基的制备和微生物的培养方法。

6. 微生物的代谢(10%)

对四种营养类型微生物的产能方式有概括的了解和比较。熟练掌握异养微生物通过发酵和呼吸产能的主要类型,具体代谢过程及特点,并能够运用产能代谢理论解释微生物与食品发酵的关系。

7. 微生物的生长繁殖及其控制(15%)

掌握微生物的生长规律和理论,掌握测定生长曲线、计算代时的方法;明确影响微生物生长的主要因素,了解微生物生长繁殖控制对食品安全的重要性。

8. 微生物遗传(15%)

了解微生物基因组及遗传物质的存在特点,掌握质粒的基本概念和特点;了解微生物基因突变的一般原因、类型和效应。掌握原核微生物基因重组的类型和具体过程。

9. 微生物生态学与微生物分类学(5%)

了解微生物在生态系统中的作用、微生物与生物环境之间的关系、自然界中的微生物分布。 了解基本的微生物分类学概念,包括"种"的命名方法、分类单元、分类系统和分类依据等。 了解伯杰氏分类系统、三域分类系统。

10. 食品微生物与食品污染和腐败(5%)

掌握食品腐败常见微生物、污染食品微生物的来源、微生物污染食品的途径、各类食品中常见的微生物污染、食品污染微生物指标、微生物与食品腐败的关系及食品腐败的预防、控制。

11. 微生物和食源性疾病(5%)

掌握食源性疾病的概念、分类、致病机理和常见食源性疾病。

12. 微生物在食品生产中的应用(10%)

掌握食品制造中常用的微生物种类及作用机制。常见利用微生物制造食品的种类。

三、试卷题型及比例

- 1. 选择题、填空题、判断题: 40%。
- 2. 简答题、论述题: 60%。
- 四、考试形式及时间

考试形式均为笔试。考试时间为三小时(满分 150)。

861 食品化学

## 一、考试总体要求

掌握食品化学的基本理论知识,能运用所学知识分析和解释食品加工和贮藏中发生的变化及解决实际问题。

- 二、考试的内容及比例
- 1. 水分(约占10~15%)
- 2. 碳水化合物 (约占 15~25%)
- 3. 脂质(约占10~20%)
- 4. 氨基酸、肽和蛋白质(约占15~25%)
- 5. 维生素和矿物质(约占10~15%)
- 6. 酶(约占10~20%)
- 7. 色素 (约占 10~15%)
- 三、试卷题型及比例

试卷题型为问答题和叙述题,比例分别为60%和40%。

四、考试形式及时间

笔试,考试时间为三小时。

#### 一、考试的总体要求

该课程是材料学专业(金属材料方向)的一门重要专业基础课,要求考生全面、系统地 掌握金属学的基本知识和基本理论;了解与金属材料性能密切相关的物质结构特征及与形成 过程相关的材料行为规律;具备综合运用所学知识进行分析和解决实际问题的能力。

### 二、考试的内容

- 第1部分 金属的晶体结构
- ① 空间点阵和晶胞;
- ② 晶系和布拉菲点阵;
- ③ 晶向指数和晶面指数;
- ④ 典型金属的晶体结构:原子堆垛方式、点阵常数、配位数和致密度;间隙;
- ⑤ 多晶型转变。
- 第2部分 晶体缺陷
- ① 点缺陷:点缺陷的类型、点缺陷的产生:
- ② 位错的基本概念:位错的基本类型、柏氏矢量、位错的运动、位错密度、位错的观察。
- ③ 位错的能量及交互作用:位错的应变能、位错的线张力、位错的应力场、位错的分解与合成:
- ④ 晶体中的界面: 晶界的结构与晶界能。
- 第3部分 相结构及相图
- ① 材料的相结构: 固溶体、中间相;
- ② 二元相图及其类型:相图的基本知识、杠杆定律、二元系相图、相图与性能的关系;
- ③ 复杂相图分析:分析方法、铁-碳合金相图;
- ④ 相图热力学基础: 吉布斯自由能与成分的关系、相平衡条件、吉布斯自由能曲线与相图:
- ⑤ 三元系相图及其类型:三元相图的表示方法、相区接触法则、垂直截面及水平截面、三元匀晶相图、具有两相共晶反应的三元系相图、具有共晶型四相平衡反应的三元系相图。
- 第4部分 金属的凝固
- ① 晶体材料熔融凝固的基本规律:液态的结构、凝固的热力学条件、过冷现象、结晶的一般过程:
- ② 晶核的形成:均匀形核、形核率、非均匀形核;
- ③ 晶核的生长:液-固界面的微观结构、熔体中晶体的生长形态、晶体长大的线速度:
- ④ 固溶体的凝固: 固溶体的平衡凝固、稳态凝固、成分过冷;
- ⑤ 共晶合金的凝固: 共晶体的形成、共晶体的形态;
- ⑥ 凝固组织及其控制: 晶粒尺寸的控制、铸锭组织及其控制、铸锭的缺陷;
- 第5部分 材料中的原子扩散
- ① 扩散现象及扩散方程:扩散现象、菲克第一定律、菲克第二定律、扩散方程的应用、柯肯达尔效应:
- ② 扩散的微观机制: 空位机制、间隙机制、自间隙机制、扩散系数、扩散激活能;
- ③ 扩散驱动力;
- ④ 反应扩散;
- ⑤ 影响扩散的因素。
- 第6部分 金属的塑性变形
- ① 滑移与孪晶变形:滑移机制、滑移面和滑移方向、孪晶变形;

- ② 单晶体的塑性变形: 施密特定律、单滑移、多滑移、交滑移;
- ③ 多晶体的塑性变形;
- ④ 纯金属的变形强化:位错的交割、位错的反应、位错的增殖;
- ⑤ 合金的变形与强化:单相合金的变形与强化、低碳钢的屈服和应变时效、第二相对合金变形的影响;
- ⑥ 冷变形金属的组织与性能:冷变形金属的力学性能、冷变形金属的组织、形变织构、残余应力:

第7部分 回复与再结晶

- ① 冷变形金属的回复:回复阶段性能与组织的变化、回复动力学、回复机制;
- ② 冷变形金属的再结晶: 再结晶的形核、再结晶动力学、影响再结晶的因素、再结晶后的晶粒长大:
- ③ 金属的热变形对组织与性能的影响。
- 三、试卷题型及比例
- 1. 名词解释
- 2. 是非判断
- 3. 选择填空
- 4. 问答题
- 5. 计算题
- 6. 作图题

第1、2、3种类型占25%~35%;第4、5、6种类型约占65%~75%。

四、考试形式及时间

考试形式均为笔试。考试时间为三小时(满分 150)。

#### 一、考试的总体要求

要求考生掌握高分子化学的基本知识,熟悉不同类型聚合反应的特征,了解聚合物合成及改性的主要机理和方法;掌握高分子各层结构内容、分子运动特点、力学性能和溶液性质几方面的基本概念,了解高分子各层结构和性能间的相互联系。考生应具有一定综合运用高分子化学与物理知识分析和解释问题的能力。

## 二、考试的内容及比例

1、高分子化学部分(50%)

#### (1)高分子化学的基本概念

熟练掌握高分子化学有关的基本概念,例如,聚合物、单体、聚合物的重复单元、结构单元、 聚合度、高分子的链结构,热塑性聚合物、热固性聚合物,聚合物的各种相对分子质量及其 表示方法,聚合物的分类和命名。

#### (2)逐步聚合反应

线型缩聚与成环倾向,线型缩聚反应机理及动力学,影响线型缩聚物聚合度的因素和控制方法;线型逐步聚合原理和方法的应用及重要线型逐步聚合物;体型缩聚与单体官能度,无规预聚物和结构预聚物的制备,凝胶化作用和凝胶点的预测。

## (3)自由基聚合和自由基共聚合

自由基聚合的单体和引发剂;自由基聚合反应的机理及特征;自由基聚合反应微观动力学;温度对聚合速率的影响;聚合物动力学链长和聚合度的调整;阻聚剂和阻聚作用;自由基聚合热力学及其单体结构的影响。共聚物的类型和命名;二元共聚物组成方程、组成曲线;竞聚率及其影响因素;竞聚率的测定;共聚物组成的控制方法及与转化率的定性关系;单体和自由基的活性;Q—e 概念及其应用。

#### (4)离子型聚合、配位聚合与开环聚合

离子型聚合的单体与引发剂;离子型聚合的机理与动力学;离子型聚合的影响因素;离子型聚合的分子量控制;活性离子聚合及其应用。配位聚合的定义和特点;配位聚合反应机理与基元反应;聚合物的立构规整度;Ziegler-Natta 引发剂的组成及各组份的作用。开环聚合反应机理;环状单体的聚合活性;工业上重要的开环聚合。

#### (5)高分子反应

聚合物的化学反应聚合物的反应活性、特征及其影响因素;聚合物的相似转变;聚合度增大的化学方法;聚合物的降解与老化;功能高分子材料化学。

#### 2、高分子物理部分(50%)

## (1)高分子的链结构

范围---结构特点、各级结构包含的具体内容、大分子链的构象统计。

掌握内容:该部分内容所涉及到的基本术语,各级链结构对聚集态结构和性能的影响,各级链结构与链柔顺性的关系。

#### (2)高分子的聚集态结构

范围---分子间作用力、结晶形态、聚集态结构模型、结晶过程和结晶热力学、取向态结构、 液晶态结构。

掌握内容:分子间作用力的类别,大分子晶体的形态特点和制备方法,两大类聚集态结构模型的特点和实验依据,分子结构对结晶能力和熔点的影响,熔融过程的本质,结晶度的测定,结晶和性能的对应关系。

#### (3)分子运动

范围---分子热运动特点、力学状态、玻璃化转变。

掌握内容:基本术语,热运动的三大特点,三大类聚合物的温度—形变曲线(温度—模量),玻璃化转变的实质和转变温度的测定,影响玻璃化转变温度的因素。

#### (4)力学性质

范围--玻璃态和结晶态聚合物的力学性质、高弹性、粘弹性。

掌握内容:聚合物的拉伸行为、屈服、断裂和强度,高弹性的特点,橡胶弹性的热力学分析和统计理论,力学松弛现象,粘弹性的力学模型,时温等效和 Boltzmann 叠加原理,拉伸行为的试验方法。

#### (5)溶液性质

范围--溶解、高分子溶液的热力学性质、分子量及分布。

掌握内容:溶解能力的判断,Flory—Huggins 高分子溶液理论,θ 温度,Flory—Huggins 高分子稀溶液理论,平均分子量与分布函数,分子量及分子量分布的测定方法。

## 三、试卷题型及比例

- 1. 基本术语解释(10-15%)
- 2. 简答题(20-25%)
- 3. 图形题(10-15%)
- 4. 计算题 (15-25%)
- 5. 论述题 (25—35%)
- 四、考试形式及时间

考试形式为笔试。考试时间为三小时。

## 一、考试的总体要求

要求考生从材料学学科领域的范畴,较系统地掌握各部分章节的基础理论和基本知识,了解与无机固体材料性能密切相关的物质结构特征,与过程相关的材料行为规律。从微观、宏观、物质内部及表面、静态、动态等不同角度,认识无机非金属材料的基本特性。具备综合运用所学知识进行分析和解决实际问题的能力。为从事材料的设计与制造,新材料的研究与开发,以及继续进行专业学习奠定基础。

## 二、考试的内容及比例

### 第1章 结晶学基础(20~25分)

- ① 等同点及空间格子、布拉维法则和面角守恒定律;
- ② 晶体的宏观对称、宏观对称要素的组合、对称型(点群)、晶族、晶系及晶体常数特征;
- ③ 晶体定向、结晶符号及其相互联系;
- ④ 十四种空间格子、晶体的微观对称要素:
- ⑤ 点群、空间群及其国际符号;
- ⑥ 球体紧密堆积原理:
- ⑦ 晶体化学基本原理:配位数和配位多面体、离子极化、电负性、鲍林规则及应用。

### 第2章 晶体结构与晶体中的缺陷(20~30分)

- ① 无机非金属材料组成与晶体结构类型:金刚石结构、NaCl结构、闪锌矿结构、萤石结构、钙钛矿结构;
- ② 层状和架状硅酸盐晶体结构;
- ③ 缺陷化学反应表示法、热缺陷浓度计算:
- ④ 位错的基本类型;
- ⑤ 外表面、晶界与亚晶界;
- ⑥ 固溶体特点、分类及其研究方法,置换型固溶体中"组分缺陷"反应表示,非化学计量化 合物的各种缺陷反应。

#### 第3章 熔体和玻璃(10~15分)

- ① 无机熔体的结构理论和熔体性质;
- ② 玻璃的通性;
- ③ 玻璃形成的基本条件:
- ④ 玻璃的结构及结构参数。

#### 第4章 表面与界面(10~15分)

- ① 表面能和表面张力;
- ② 表面的驰豫、重构及双电层、固体的表面能;
- ③ 弯曲表面效应;表面润湿,粘附、吸附和表面改性;
- ④ 界面特性: 晶界偏析、晶界迁移、晶界应力、晶界电荷与静电势;

## 第5章 相平衡与相图 (30~40分)

- ① 相与相平衡的基本概念;
- ② 单元和二元系统相图各种基本类型的阅读分析;
- ③ 三元相图中的基本类型,运用相图的基本规则来确定相图中的点和线的性质以及相平衡和非平衡条件下的析晶路程。
- ④ 典型专业相图的分析计算。

## 第6章 扩散与固相反应(10~20分)

- ① 固体中质点扩散的特点和扩散动力学方程,扩散系数的含义,影响扩散的因素;
- ② 固相反应及其特征,固相反应中两个扩散动力学方程的分析和比较,影响固相反应的因素。

## 第7章 相变(10~20分)

- ① 相变的简介与分类;
- ② 液-固相变过程的热力学和动力学特点,熔体析晶过程成核与生长过程动力学分析;
- ③ 液-液相变中的玻璃分相,亚稳区和不稳区的热力学和动力学特点。

## 第8章 烧结(15~25分)

- ① 烧结的概念及推动力;
- ② 固态烧结和液态烧结的传质机理与特点;
- ③ 晶粒生长和二次再结晶的概念和分析;
- ④ 晶界在烧结中的作用;
- ⑤ 影响烧结的因素。

## 三、试卷类型及比例

1、填空判断: 10~20%; 2、简 答 题: 20~30%; 3、计 算 题: 10~25%; 4、分析讨论题: 30~40%。

## 四、考试形式及时间

考试形式为笔试,考试时间为三小时。

#### 一、考试的总体要求

"基础有机化学"入学考试是为招收高分子材料科学与工程类硕士生而实施的选拔性考试。 其指导思想是有利于选拔具有扎实的有机高分子材料化学基础理论知识的高素质人才。要求 考生能够系统地掌握基础有机化学的基本知识以及具备运用所学的知识分析问题和解决问 题的能力。

### 二、考试的内容及比例

- 1、有机化合物的命名,包括顺反异构体与对映异构体的命名、个别重要化合物的俗名和英文缩写。
- 2、有机化合物的结构、共振杂化体与芳香性,同分异构与构象,分子轨道理论与周环反应。
- 3、诱导效应、共轭效应、超共轭效应、空间效应、小环张力效应、邻基效应、氢键的概念及上述效应对化合物物理与化学性质的影响。
- 4、常见有机化合物的红外光谱与核磁共振波谱。
- 5、主要官能团(烯键、炔键、卤素、硝基、氨基、羟基、醚键、醛基、酮羰基、羧基、酯基、 卤甲酰基、氨甲酰基、氰基等)的化学性质及他们之间的相互转化规律。
- 6、烷烃、脂环烃、烯烃、炔烃、共轭烯烃、卤代烃、醇、酚、醚、醛、酮、不饱羰基化合物、羧酸及其衍生物、丙二酸酯、β-丙酮酸酯、氨基酸、硝基化合物、胺、腈、偶氮化合物、磺酸、简单杂环化合物等的制备、分离、鉴定、化学性质及在合成上的应用。
- 7、饱和碳原子上的自由基取代与亲核取代反应,芳环上的亲电与亲核取代反应,碳碳重键的亲电、自由基与亲核加成反应,饱和碳原子与非饱和碳原子上的消除反应,氧化反应(烷烃、烯烃、炔烃、醇、醛、芳烃侧链的氧化、烯炔的臭氧化、芳醛的 Cannizzaro 反应),还原反应(不饱和烃、芳烃、醛、酮、羧酸、羧酸衍生物、硝基化合物、腈的氢化还原及选择性还原反应),缩合反应(羟醛缩合、Claisen 缩合、Caisen-Schmidt 缩合、Perkin 缩合),降级反应(Hofmann 降解,脱羧),重氮化与偶合反应,重排反应(频那醇重排、Beckmann 重排、Hofmann 重排)的历程及在有机合成中的应用。
- 8、碳正离子、碳负离子、自由基、苯炔的生成与稳定性及其有关的反应规律。能够从中间 体稳定性来判断产物结构,能够从反应产物推测反应机理。

### 三、考试的题型及比例

- 1、有机化合物命名或根据名称写出结构式 6~10%。
- 2、完成反应式(由相互间的逻辑关系写出反应物、反应条件或反应产物)25-30%。
- 3、选择题(涉及中间体的稳定性、芳香性、反应定位规则、电子效应与空间效应、构象与构象分析、化合物反应活性、官能闭鉴定等)10~12%。
- 4、有机反应机理(典型反应的历程)6~10%。
- 5、简答题(对反应现象和反应规律的合理解释等)6~10%。
- 6、有机化合物分离与鉴别 4~5%。
- 7、根据化学反应(现象)、化学与物理性质、红外光谱与核磁共振波谱数据等条件推断化合物的分子结构 8~10%
- 8、有机合成题 20~25%
- 四、考试形式及时间
  - "基础有机化学"考试形式为笔试,考试时间为3小时。

#### 一、 考试的总体要求

本考试内容由两部分组成,数据结构和程序设计,各占总分的50%。

数据结构是计算机科学与技术专业基础课,要求学生掌握基本的数据结构及相关的存储方式、基本运算、算法和应用,并能运用盒图、结构化语言、类 C、高级语言(C 或 C++)等方法之一编写算法。

程序设计指采用 C++语言,应用数据结构的知识进行面向对象程序设计。要求学生掌握面向对象的程序设计方法,掌握 C++语言的基本概念,语法及编程方法。

## 二、考试的内容及比例

数据结构考试的内容包括: (占总分50%)

- 1、 线性表、顺序表、链表的定义、特点、存储结构及相关的基本算法
- 2、 栈的定义、特点、顺序与链式存储表示、基本算法; 栈的应用; 队列的定义、特点; 链 队列、循环队列相关的定义、特点、基本算法; 栈与递归的实现
- 3、 广义表的定义及存储结构
- 4、 二叉树的定义、性质及存储结构;遍历二叉树定义、过程及其算法;二叉树的应用;树、森林与二叉数之间的转换;哈夫曼树及其应用;与二叉树应用相关的递归算法
- 5、 图的定义、存储结构;图的遍历过程及算法;最小生成树构造过程及算法;拓扑排序过程及算法;关键路径相关内容;最短路径相关内容;与图的应用相关的递归算法
- 6、 静态表查找过程及算法、动态表查找过程及算法; 哈希表的构造及处理冲突方法
- 7、 插入排序、快速排序、选择排序、归并排序、基数排序等内部排序的特点、过程及算法

#### 程序设计考试的内容包括: (占总分50%)

- 1、 基本语法与常用语句,面向对象的基本概念
- 2、 函数的调用, 函数参数, 函数的重载及函数作用域
- 3、 类的概念, 类的定义与说明, 类的成员函数, 作用域
- 4、 对象的概念,对象的初始化,对象的特殊生成方法,对象的生存期
- 5、 对象指针和对象引用,对象数组
- 6、 类的继承性和派生类
- 7、 虚基类与虚函数
- 8、 重载及其应用
- 9、 模版及其应用
- 10、基本数据结构和算法的程序设计

#### 三、 试卷类型及比例

#### 考试题型:

#### 数据结构部分:

包括实做题与算法设计题两大类:其中实做题有简述题、举例说明题、图示题、图表题、过程描述题、论述题等。算法设计题应当根据要求,运用允许使用的适当的方法编写算法。

比例: 实做题(60%)

算法设计题(40%)

程序设计部分:

包括3类题型:程序填空,写程序结果和程序设计。

程序填空题:本题型给出程序的功能描述与少量提示,考生填写缺少的程序部分,使得程序完整,并且实现描述的功能。

本题型为 20 分, 2---4 个题。

写程序结果题:本题型给出 C++程序,并已经调试通过,考生需要根据 C++的语法与语义给出正常运行后应该输出的结果。需要按照程序运行的顺序给出正确结果,不需要对程序的正确性进行判断。

本题型为 30 分, 4---6 个题。

程序设计: 按照题中的要求,写出完整的 C++程序,并符合程序设计规范。

本题型为25分,2个题。

四、 考试形式及时间

考试形式均为笔试,考试时间为三小时(满分150分)。

## 五、 参考书目

#### 数据结构:

- 1、《数据结构》C语言版,严为敏 吴伟民编,清华大学出版社,2009.
- 2、《数据结构》 (用面向对象方法与 C++描述), 殷人昆等,清华大学出版社,2007.

## 程序设计:

- 1、《C++程序设计》, Y. Daniel Liang 著, 王刚 刘晓光 刘璟译, 机械工业出版社
- 2、《C++编程思想(两卷合订本)》埃克尔(Bruce Eckel)、Chuck Allison、刘宗田、 袁兆山 机械工业出版社
- 3、《C++程序设计语言(特别版 o 十周年中文纪念版)》斯特朗斯特鲁普(Bjarne Stroustrup)、 裘宗燕 机械工业出版社

902 软件工程

## 一、 考试的总体要求

本考试内容主要包括结构化软件工程、面向对象软件工程、统一建模语言(UML)三部分内容。

软件工程是软件工程、计算机软件与理论及其他相关专业的一门重要的专业课,要求学生掌握基本的软件工程思想并能熟练运用成熟的结构化软件工程方法,并能熟练运用 UML 进行面向对象的软件工程建模。

- 二、考试的内容及比例
- 1、 软件工程概念、软件生命周期概念、软件生命周期模型、软件流程
- 2、 数据字典、数据流图及其应用;结构化分析方法包括变换分析、事务分析
- 3、 结构化的设计方法;程序流程图、盒图、判定树、判定表及应用;模块化、耦合、内聚的定义,各种耦合和内聚类型;
- 4、 统一建模语言(UML)定义、优点; UML 中的图、图的构成以及各自功能; 元素间的 关系:关联、聚合、组成、依赖等的含义及应用; 用例图的画法; 顺序图(Sequence Diagram)和通信图(Communication Diagram)的关系及建模方法; 类图的设计方法; 状态机图的建模; 组件图和部署图的基本概念; 逆向工程的概念;
- 5、 面向对象的分析; 用例分析方法
- 6、 面向对象的设计; 类设计方法; 子系统及设计方法;
- 7、 软件测试的基本概念; 白盒测试和黑盒测试的定义; 等价类划分、边界值分析; 确认和验证; 语句覆盖、判定覆盖、条件覆盖、判定一条件覆盖、条件组合覆盖、路径覆盖; 单元测试概念; 集成测试; α 测试和 β 测试; 回归测试
- 三、 试卷类型及比例

#### 考试题型:

包括名词解释、论述、建模三大类:其中简答题可能包括说明题、举例说明题、图示题、论述题等。建模题则针对至少两个应用系统,分别使用结构化和面向对象分析设计方法进行建模。

比例: 实做题(50%-60%)

算法设计题(40%-50%)

四、 考试形式及时间

考试形式为笔试,考试时间为三小时(满分150分)。

五、参考书目:

软件工程导论(第4版),张海藩,清华大学出版社

软件工程:实践者研究方法(原书第6版),(美)普雷斯曼著,郑人杰等译,机械工业出版 社

#### 一、 考试的总体要求

- 1、全面掌握城乡规划工作中会涉及到的包括规划制定、实施管理、监督检查三大方面的各种理论常识、基本原则、管理程序及相关法律法规知识;
- 2、了解城乡规划的制定与修改、城乡规划的实施与管理、城乡规划的监督检查与法律责任等实际业务知识和技能方法;
- 3、综合运用城市规划原理、城市规划相关知识、城市规划管理与法规的能力,具备理解、 把握技术标准规范和国家政策的能力。
- 4、综合运用基本的城乡规划原理、法规和相关知识,评析总体规划、控制性详细规划、修建性详细规划、城市设计等城乡规划方案,综合解决城乡规划管理事件,具备一定的理论联系实际的灵活运用能力。

#### 二、 考试的内容、试卷题型及比例:

## (1) 考试内容及要求

- ①能熟练准确地解释与城乡规划实际工作相关的各种基本知识、基本概念;
- ②能正确、清楚地表述建设项目选址、变更、监督检查等城乡规划设计与管理业务事件处理中运用的法规和原理、程序和处理方法等问题;
- ③能正确运用城乡规划方案的分析和综合评价方法,理论联系实际,通过图文结合的方式,准确评述分析总体规划、控制性详细规划、修建性详细规划、城市设计等城乡规划设计方案的优缺点并简明扼要地提出解决策略。
- (2) 试卷题型及比例
- 一般分为概念题、叙述题和方案解析题等几个部分。概念题约占 20%, 叙述题约占 30%, 方案解析题约占 60%。

#### 三、 考试形式及时间

考试形式为笔试。考试时间为3小时。

### 四、参考书目:

- 1、《城市规划原理》,第四版,中国建筑工业出版社;
- 2、全国注册城市规划师执业资格考试参考用书《城市规划原理》,全国城市规划执业制度管理委员会;
- 3、全国注册城市规划师执业资格考试参考用书《城市规划相关知识》,全国城市规划执业制度管理委员会:
- 4、全国注册城市规划师执业资格考试参考用书《城市规划管理与法规》,全国城市规划执业制度管理委员会;
- 5、全国注册城市规划师执业资格考试参考用书《城市规划实务》,全国城市规划执业制度管理委员会。

## 一、考试总体要求

要求考生系统地掌握细胞生物学的基本内容和主要研究方法,掌握生命体最基本的结构与功能单位,细胞结构与功能的密切关系,理解细胞信号传递与多种生命活动之间的密切关系,理解细胞生命活动的规律等最基本的基础理论知识,同时还要求考生掌握细胞生物学研究领域中的最新的研究进展和成就,具备较强的分析问题与解决问题的能力。

## 二、考试内容

## 1.细胞的统一性与多样性

细胞的基本概念、新思考、一般结构、元素组成和大分子组成以及细胞的基本共性,病毒及其与细胞的关系;原核细胞的重要代表——支原体、细菌、蓝藻、古核细胞以及原核细胞与真核细胞的比较等内容。细胞生物学研究的模式生物及其特点。真核细胞的基本结构体系、细胞形态结构与功能的关系以及植物细胞与动物细胞的异同点。病毒、原核细胞、真核细胞的基本形态、结构与功能的关系、进化地位、共性和特性。

#### 2.细胞生物学研究方法

细胞形态结构的观察方法,包括各种光镜、电镜的结构特点、技术性能、工作原理、适用范围以及各自要求的制样技术及特点;细胞组分的分析方法,包括细胞及细胞组分的分离与纯化;特异蛋白质抗原的定位与定性;特异核酸的定位与定性以及同位素技术研究生物大分子在细胞内的合成动态。细胞内核酸、蛋白质、酶、糖和脂等的显示方法; DNA 与蛋白质的体外吸附技术以及定量细胞化学分析技术。细胞培养技术及其应用,细胞工程和单克隆抗体,显微操作技术。各种研究方法的用途,基本原理,基本操作程序。

## 3.细胞质膜与细胞表面

细胞膜的结构模型、膜成分——膜脂、膜蛋白的运动(流动性与分布的不对称性等),细胞质膜功能,细胞表面特化结构、及其产生及功能;细胞外被、细胞外基质(胶原,糖胺聚糖和蛋白聚糖,层粘连蛋白和纤连蛋白,弹性蛋白等)、细胞壁的产生、特点及功能。

## 4.物质跨膜运输与信息传递

物质跨膜运输的方式(主动运输,被动运输,胞吞作用和胞吐作用等)、特点及其与细胞生命活动的关系。细胞通讯和信号传递的方式、特点(征)、规律及其与细胞生命活动的关系。物质跨膜运输的基本方式,各方式的特点,物质选择性运输与细胞多种生命活动之间的关系,细胞识别,细胞通讯与信号传递的途径,涉及信号传递的细胞中的受体的种类,特征,信号传递中的信号分子及其作用规律等。

#### 5.细胞质基质与细胞内膜系统

细胞质基质(概念、功能),内质网类型、结构、功能和基因表达调控的关系,及蛋白质的分选——信号假说,高尔基复合体的形态结构和功能以及与细胞内膜泡运输中的作用;溶酶体类型、功能和生物发生以及微体。细胞结构体系的装配与蛋白质的分选之间的关系。内膜系统各成员的发生、功能及其相互关系。

#### 6.细胞的能量转换——线粒体和叶绿体

线粒体形态结构、化学组成及酶定位,叶绿体形态结构和化学组成,线粒体的氧化磷酸化和半自主性,叶绿体的功能——光合作用和半自主性,线粒体和叶绿体的增殖和起源。7.细胞核与染色体

核被膜、核孔复合体和核纤层。染色质类型、化学组成、染色质包装的结构模型,染色体支架及核骨架;中期染色体的形态结构、染色体 DNA 的关键序列、染色体核型与带型技术及其运用,染色质结构与基因转录的关系,核基质与核体的概念。巨大染色体,核仁的超

微结构和功能。细胞核和染色体的分子结构,染色质与染色体的关系。

#### 8.核糖体

核糖体的基本类型、结构与成分,多聚核糖体中蛋白质的合成。R-蛋白和 rRNA 的功能以及 RNA 在生命起源中的地位。

#### 9.细胞骨架

细胞质骨架——微丝、微管、中间纤维的形态结构和功能。细胞核骨架(核基质,染色体支架,核纤层等)。细胞骨架各成员的基本结构、形成、分布特点,以及它们与细胞多种生命活动之间的关系。

#### 10.细胞增殖及其调控

细胞周期的概念及划分的依据,细胞周期各时相及其发生在各时相的主要特征性事件。细胞分裂,特别是有丝分裂和减数分裂过程、特点和规律,细胞周期调控因子及其作用规律,细胞周期运转的调控,其他内在和外在因素在细胞周期调控中的作用。

#### 11.细胞分化与基因表达调控

细胞分化的概念、细胞发育的潜能、细胞质和细胞核在细胞分化中的作用以及影响细胞 分化的胞外因素,细胞分化与胚胎发育。癌细胞的主要特征、致癌因素和癌基因学说、癌基 因与抑癌基因以及基因突变与肿瘤发生等。真核细胞基因表达的调控转录前、转录水平、转 录后水平、翻译和翻译后加工水平的调控。

#### 12.细胞的衰老与死亡

体外培养细胞的衰老与 Hayflick 界限、体内细胞的衰老及其特征及细胞衰老的原因,分子机制与假说。细胞程序性死亡的概念、生物学意义,形态学和生物化学特征以及细胞凋亡的分子机制等,细胞凋亡与细胞衰老的关系。

#### 三、试卷题型及比例

- 1. 名词解释、选择题、判断题或填空题: 50%
- 2. 简答题、论述题: 50%

## 四、考试形式及时间

硕士研究生入学考试为笔试,考试时间为3小时。试卷务必书写清楚、符号和西文字母运用得当。不得在试题上答卷。

#### 五、参考书目:

- [1] 翟中和等.细胞生物学(第4版), 高等教育出版社, 2011.
- [2] 朱玉贤等.现代分子生物学(第4版),高等教育出版社,2013.
- [3] 杨焕明译.基因的分子生物学(第5版),科学出版社,2005.

906 遗传学

#### 一、考试的总体要求

要求考生了解经典遗传学,细胞遗传学,分子遗传学和发育遗传学等相关知识。掌握遗传学的基本规律和应用,熟悉遗传学的基本概念及规律,并具有综合运用所学知识分析问题和解决问题的能力。

## 二、考试内容

- 1、细胞分裂、染色体周史、遗传的染色体学说
- 2、孟德尔遗传分析、摩尔根遗传分析、基因互作
- 3、基因的概念、重组检测和互补检测、缺失作图
- 4、噬菌体突变的互补测验、重组实验、细菌的突变类型与重组作图、λ 噬菌体的基因组、 细菌的转化与转导作图
- 5、基因组特点、基因组复杂度、基因的包装、基因的排列、基因的扩增、丢失与重排、遗传标记
- 6、遗传重组的类型、同源重组的分子机制及意义、位点专一性重组的分子机制及意义、异常重组的分子机制及意义
- 7、转录的起始和终止、RNA的加工、操纵子模型、DNA重组调控和蛋白质合成的自体调控、反义RNA
- 8、染色质水平上的基因活化调节、转录水平的调控、转录后水平的调控、翻译水平的调控
- 9、染色体的结构变异、染色体数目的改变、基因突变、生物体的修复机制、突变体的检出
- 10、数量性状的概念、遗传分析的统计学基础、遗传率、近亲繁殖和杂种优势
- 11、基因库与基因频率、遗传漂变、物种的形成、基因的形成、分子进化的中性学说
- 12、基因工程原理、工具酶、载体、基因组克隆和 DNA 文库、转基因技术、基因组分析的 常用技术

## 三、考试的题型及比例

试题包括概念题及简答题及论述题。概念题分为名词解释和选择题两类,约占总分的20~25%;简答题一般为5-7题,约占总分的60%,论述题一般为1题,约占总分的15~20%。

#### 四、考试形式及时间

考试形式为笔试。考试时间为3小时,满分150分。

907 普通地质学

- 一、考试形式和试卷结构
- 1、试卷满分为150分,考试时间为180分钟.
- 2、答题方式: 闭卷、笔试.
- 3、试卷题型结构

名词解释10 小题,每题 4 分,共 40 分简答题5 小题,每题 10 分,共 50 分论述题(五选三)3 小题,每题 20 分,共 60 分

## 二、考试内容及要求

- (一)绪论(一般科学概念、研究方法和理论、技术等)
  - 1、掌握地球科学(地质学)的概念、研究对象与方法;
- 2、掌握地球系统(固体圈层和地球表层圈层,如大气圈,水圈,生物圈,岩石圈)各圈层的概念(物质组成特点、物理性质特点);
  - 3、了解地球表面形态构成及其演化(陆地、海洋地形单元概念)。

## (二) 地球的物质组成

内容: 1、元素在地壳中的分布、迁移和富集

- 2、矿物的定义和主要性质
- 3、岩石的分类、划分及命名原则
- 4、矿床的概念及主要分类

要求:掌握矿物(元素、丰度)的定义和主要性质;掌握岩石的分类、划分及命名原则。

#### (三) 地质年代学

内容: 1、相对地质年代及其确定方法与原理

2、绝对地质年代(同位素计时)的概念与计时理论和方法

要求:掌握地质年代单位、岩石地层单位、年代地层单位的区别联系;理解相对地质年代的判别方法、绝对地质年龄(同位素测年原理,同位素地质年代概念)的测定方法;掌握地质年代表。

#### (四) 地球构造运动

内容: 1、岩石变形与地质构造

- 2、褶皱与断层
- 3、地层的接触关系
- 4、板块构造理论

要求:理解构造运动、褶皱构造和断裂构造(概念及类型);理解地层、地层层序律、化石、生物层序律、标准化石的概念。理解板块构造的建立,如大陆漂移、海底扩张;板块构造学说的基本观点;板块边界及其分类、板块驱动机制;地幔柱、热点、部分熔融。

## (五)三大岩石及其有关成岩作用

内容: 1、火成岩与岩浆作用的基本概念

2、变质岩与变质作用的基本概念

3、沉积岩与沉积作用的基本概念

要求:掌握三大类岩石的基本概念,即化学组成、矿物组成、结构特点等;各类岩石类型的进一步分类;各类岩石的形成机制和作用特点。

(六) 风化作用

内容: 1、风化作用的类型、方式

- 2、影响各种风化作用的因素
- 3、不同风化作用的产物

要求:掌握风化作用的概念、影响因素及类型划分(如物理风化、化学风化、生物风化特点);掌握各种风化作用的产物与影响因素;掌握风化壳的概念及结构。

(七)地面流水和地下水的地质作用

内容: 1、河流的形成

- 2、河流的侵蚀、搬运、沉积作用
- 3、地下水的运动特征
- 4、地下水的化学地质作用

要求:理解地面流水类型和水动力特点(环流);了解片流和洪流的地质作用(片流,洪流)过程和产物;理解河流的侵蚀作用(河流垂直侵蚀作用及其地形产物,河流侧方侵蚀作用及其地形产物);掌握河流的搬运作用;掌握河流的沉积作用,河口区沉积作用及其产物;掌握影响地面流水地质作用的因素(构造升降运动,气候、地形、植被,人类活动等)。掌握地下水的相关概念(来源,储存形式,化学和物理性质,运动特点)及按埋藏条件地下水的类型划分;理解地下水岩溶作用(机械冲刷作用及其产物,化学溶蚀作用及其产物);理解并掌握喀斯特的概念及影响因素;了解地下水沉积作用(钙华、石笋等)的类型。

(八)冰川和海洋的地质作用

内容 1、冰川的形成、运动

- 2、冰川的剥蚀、搬运、沉积作用
- 3、海洋环境一般特征
- 4、海水的剥蚀、搬运、沉积作用

要求:掌握冰川的概念;理解冰川的类型;掌握冰川剥蚀作用的方式;掌握冰川搬运作用的概念;理解并掌握冰碛物的概念及特点。掌握海洋的物理化学性质;了解海洋的动力;理解海洋的环境分区(海底地形单元与环境分区,滨海、浅海、半深海、深海);理解海洋的剥蚀作用、搬运作用和沉积作用。

(九)湖泊和沼泽的地质作用

内容: 1、湖泊的概述

- 2、湖泊的沉积作用
- 3、沼泽及其地质作用

要求:掌握湖水的来源、排泄及理化性质;掌握湖泊的成因、类型;理解并掌握湖泊的机械、化学和生物沉积作用。掌握沼泽的概念。

(十) 地球科学与人类社会发展

内容: 1、地球资源的利用与保护

2、地球环境变化与人类活动之间的关系

## 3、地球科学的发展与人类社会未来需求

要求:理解自然资源的利用与保护的重要性;理解地球环境变化与人类活动、经济发展之间的关系。

## 三、主要参考书目

《普通地质学》同名教材不同版本的内容基本一致,可重点参考:

陶晓风 吴德超 编,《普通地质学》,科学出版社

舒良树 主编,《普通地质学》,地质出版社

吴泰然 何国琦 等 著,《普通地质学》,北京大学出版社

908

#### 一、考试的总体要求

考察学生对海洋科学的基本知识、概念、原理和方法的掌握程度,及学生运用所学知识分析问题和解决问题的能力。

#### 二、考试的内容及比例

- 1)海洋科学内涵与研究意义(5%)海洋科学在地球系统科学中的地位,海洋在国防安全、防灾减灾、资源可持续利用和环境健康保障中的作用,结合国家海洋强国战略,认识未来海洋科学发展趋势。
- 2) 海底科学基础(15%) 地球圈层结构与海陆划分的基本概念,海底地形与板块构造学说,海洋沉积类型与成因,海底矿产资源成因、开发技术及国际竞争。
- 3)海水理化性质特征(10%)海水热力学性质及其潜在影响,海水盐度定义,海水状态方程及应用,全球海面热量平衡及各分量作用。海水化学组成,海水二氧化碳系统与碳循环及海洋酸化,海水中的营养元素与富营养化,海水中的溶解气体与温室气体释放及低氧灾害。
- 4) 海水运动规律与海上活动安全(35%) 海水运动规律预测与海上活动安全保障; 地转流和风海流基本特征, 世界大洋风生环流、热盐环流和水团分布, 风浪和涌浪, 潮汐现象与平衡潮理论, 潮汐动力理论, 风暴潮灾害。
- 5) 海气相互作用规律(10%) 平均大气环流,海洋上的天气系统,不同尺度海气相互作用基本特征,海洋在气候变化中的作用,ENSO、PDO、AO、NAO 等气候波动如何影响中国近海。
- 6)海洋生态系统与资源可持续利用(10%)海洋生态系统基本概念和组成,海洋生物生产力及其调节因素,主食物链与微食物环,海洋生态系统对气候变化的响应,海洋生物资源及其可持续利用,赤潮灾害及其遥感监测。
- 7) 海洋声光传播及卫星遥感应用(15%)海洋声学特性,海洋中声的波导传播与反波导传播,海洋声学探测应用;海水中光的散射与衰减,海水透明度及其影响因素;海洋遥感主要类型与探测要素。
- 三、试卷类型及比例

名词解释 20%, 简答 20%, 论述 60%。

四、考试形式及时间

均为闭卷笔试,考试时间为3小时。

五、主要参考教材

海洋科学导论,冯士筰等 主编,高等教育出版社,1999年。